Limbic endocannabinoid signaling is known to be sensitive to chronic stress; however, studies investigating the impact of prolonged exposure to glucocorticoid hormones have been limited by the concurrent exposure to the stress of daily injections. The present study was designed to examine the effects of a noninvasive approach to alter plasma corticosterone (CORT) on the endocannabinoid system. More precisely, we explored the effects of a 4-week exposure to CORT dissolved in the drinking water of mice (100 μg/ml) and measured cannabinoid CB(1) receptor binding, endocannabinoid content, activity of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH), and mRNA expression of both the CB(1) receptor and FAAH in both the hippocampus and amygdala. Our data demonstrate that CORT decreases CB(1) receptor binding site density in both the hippocampus and amygdala and also reduced anandamide (AEA) content and increased FAAH activity within both structures. These changes in both CB(1) receptor binding and FAAH activity were not accompanied by changes in mRNA expression of either the CB(1) receptor or FAAH in either brain region. Interestingly, our CORT delivery regimen significantly increased 2-AG concentrations within the hippocampus, but not the amygdala. Collectively, these data demonstrate that the confounder of injection stress is sufficient to conceal the ability of protracted exposure to glucocorticoids to reduce CB(1) receptor density and augment AEA metabolism within limbic structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697830 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2011.08.048 | DOI Listing |
Front Pharmacol
January 2025
Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China.
Purpose: Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated.
View Article and Find Full Text PDFPharmacol Ther
January 2025
Xi'an Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Shaanxi University of Science & Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an 710021, China. Electronic address:
G protein-coupled receptors (GPCRs) adopt conformational states that activate or inhibit distinct signaling pathways, including those mediated by G proteins or β-arrestins. Biased signaling through GPCRs may offer a promising strategy to enhance therapeutic efficacy while reducing adverse effects. Cannabinoid receptor 1 (CB1), a key GPCR in the endocannabinoid system, presents therapeutic potential for conditions such as pain, anxiety, cognitive impairment, psychiatric disorders, and metabolic diseases.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
The endocannabinoid system (ECS) is involved in the regulation of energy metabolism, immune function and reproduction in mammals. The ECS is consisted of the endocannabinoid (eCB) ligands, enzymes, and cannabinoid receptors. In mammals, the cannabinoid-1 receptor (CB1/CNR1) is expressed in the central nervous system and in peripheral tissues; and its activation increases anabolic processes.
View Article and Find Full Text PDFPharmacol Res
January 2025
Gill Institute for Neuroscience, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States. Electronic address:
Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States.
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!