Quantum yield is one of the most important properties of photochromic systems. Unfortunately, a lack of data at the solid state exists, because measurements are intrinsically not straightforward. A kinetic model describing the conversion of the photoactive species is reported and both analytic and numeric solutions are provided according to relevant cases. The model is then applied to measure the quantum yield of dithienylethene-based polymers; the ring-opening quantum yield is measured for different laser beam profiles (i.e., Gaussian and uniform) and at different wavelengths, showing an increased value with increasing photon energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp207210p | DOI Listing |
Food Chem
January 2025
Department of Food Science, University of Otago, Dunedin 9016, New Zealand; Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand.
Near-infrared (NIR) spectroscopy with chemometrics was used to evaluate semi-refined flaxseed protein extract (SRFPE) and predict its protein content. The effect of extraction medium (water vs. alkaline) employed after pulsed electric field (PEF) treatment on protein yield was also studied.
View Article and Find Full Text PDFTree Physiol
January 2025
Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.
View Article and Find Full Text PDFChem Sci
January 2025
Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 P. R. China
Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.
View Article and Find Full Text PDFCatal Sci Technol
January 2025
Department of Chemistry and Chemical Biology, Stevens Institute of Technology 1 Castle Point Terrace Hoboken NJ 07030 USA
Engineered heme proteins possess excellent biocatalytic carbene N-H insertion abilities for sustainable synthesis, and most of them have His as the Fe axial ligand. However, information on the basic reaction mechanisms is limited, and ground states of heme carbenes involved in the prior computational mechanistic studies are under debate. A comprehensive quantum chemical reaction pathway study was performed for the heme model with a His analogue as the axial ligand and carbene from the widely used precursor ethyl diazoacetate with aniline as the substrate.
View Article and Find Full Text PDFNat Mater
January 2025
School of Chemistry, Beihang University, Beijing, China.
The rational design of non-fullerene acceptors (NFAs) with both high crystallinity and photoluminescence quantum yield (PLQY) is of crucial importance for achieving high-efficiency and low-energy-loss organic solar cells (OSCs). However, increasing the crystallinity of an NFA tends to decrease its PLQY, which results in a high non-radiative energy loss in OSCs. Here we demonstrate that the crystallinity and PLQY of NFAs can be fine-tuned by asymmetrically adapting the branching position of alkyl chains on the thiophene unit of the L8-BO acceptor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!