Tunnel-structured potassium titanate with a K(3)Ti(8)O(17) phase was synthesized by direct oxidation of titanium powder mixed with KF(aq) in water vapor at 923 K. The reaction conditions were adjusted so that uniform single crystalline potassium titanate nanowires with [010] growth direction (length: 5-30 μm, diameter: 80-100 nm) were obtained. Nitridation of the nanowires by NH(3)(g) at 973-1073 K converted the titanate nanowires into rock-salt structured cubic phase single crystalline titanium oxynitride TiN(x)O(y) nanotubes (x = 0.88, y = 0.12, length = 1-10 μm, diameter = 150-250 nm, wall thickness = 30 - 50 nm) and nanorods (x = 0.5, y = 0.5, length = 1-5 μm, diameter = 100-200 nm) with rough surfaces and [200] growth direction. The overall conversion of the titanate nanowires into the nanotubes and the nanorods can be rationalized by Ostwald ripening mechanism. We fabricated an electrode by adhering TiN(x)O(y) nanotubes (0.2 mg) on a screen-printed carbon electrode (geometric area: 0.2 cm(2)). Electrochemical impedance spectroscopy demonstrated its charge transfer resistance to be 20Ω. The electrochemical surface area of the nanotubes on the electrode was characterized by cyclic voltammetry to be 0.32 cm(2). This property suggests that the TiN(x)O(y) nanostructures can be employed as potential electrode materials for electrochemical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am201151tDOI Listing

Publication Analysis

Top Keywords

titanate nanowires
16
potassium titanate
12
μm diameter
12
titanium oxynitride
8
single crystalline
8
growth direction
8
tinxoy nanotubes
8
titanate
5
nanowires
5
nanotubes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!