Escape from natural enemies is a widely held generalization for the success of exotic plants. We conducted a large-scale experiment in Hawaii (USA) to quantify impacts of ungulate removal on plant growth and performance, and to test whether elimination of an exotic generalist herbivore facilitated exotic success. Assessment of impacted and control sites before and after ungulate exclusion using airborne imaging spectroscopy and LiDAR, time series satellite observations, and ground-based field studies over nine years indicated that removal of generalist herbivores facilitated exotic success, but the abundance of native species was unchanged. Vegetation cover <1 m in height increased in ungulate-free areas from 48.7% +/- 1.5% to 74.3% +/- 1.8% over 8.4 years, corresponding to an annualized growth rate of lambda = 1.05 +/- 0.01 yr(-1) (median +/- SD). Most of the change was attributable to exotic plant species, which increased from 24.4% +/- 1.4% to 49.1% +/- 2.0%, (lambda = 1.08 +/- 0.01 yr(-1)). Native plants experienced no significant change in cover (23.0% +/- 1.3% to 24.2% +/- 1.8%, lambda = 1.01 +/- 0.01 yr(-1)). Time series of satellite phenology were indistinguishable between the treatment and a 3.0-km2 control site for four years prior to ungulate removal, but they diverged immediately following exclusion of ungulates. Comparison of monthly EVI means before and after ungulate exclusion and between the managed and control areas indicates that EVI strongly increased in the managed area after ungulate exclusion. Field studies and airborne analyses show that the dominant invader was Senecio madagascariensis, an invasive annual forb that increased from < 0.01% to 14.7% fractional cover in ungulate-free areas (lambda = 1.89 +/- 0.34 yr(-1)), but which was nearly absent from the control site. A combination of canopy LAI, water, and fractional cover were expressed in satellite EVI time series and indicate that the invaded region maintained greenness during drought conditions. These findings demonstrate that enemy release from generalist herbivores can facilitate exotic success and suggest a plausible mechanism by which invasion occurred. They also show how novel remote-sensing technology can be integrated with conservation and management to help address exotic plant invasions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/10-0859.1 | DOI Listing |
Theor Appl Genet
December 2024
Cotton Fiber Bioscience and Utilization Research Unit, USDA-ARS-SRRC, New Orleans, 70124, LA, USA.
GWAS of a new MAGIC population containing alleles from five tetraploid Gossypium species identified novel fiber QTL and confirmed previously identified stable QTL. Identification of loci and underlying genes for fiber quality traits will facilitate genetic improvement in cotton fiber quality. In this research, a genome-wide association study (GWAS) was carried out for fiber quality attributes using a new multi-parent advanced generation inter-cross (MAGIC) population consisting of 372 recombinant inbred lines (RILs).
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
Restoration of haploid female and haploid male fertility without colchicine is feasible. Three SNPs and eight gene models for HFF, and one SNP and a gene model for HMF were identified. Doubled haploid (DH) breeding accelerates the development of elite inbred lines and facilitates the incorporation of exotic germplasm, offering a powerful tool for maize improvement.
View Article and Find Full Text PDFNew Phytol
December 2024
Associate Laboratory TERRA, Department of Life Sciences, Centre for Functional Ecology, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
Climate change is forcing species to shift their distribution ranges. Animal seed dispersers might be particularly important in assisting plants tracking suitable climates to higher elevations. However, this role is still poorly understood due to a lack of comprehensive multi-guild datasets along elevational gradients.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait.
Moiré magnets have emerged as intriguing platforms for hosting exotic magnetic states due to the competing interactions within these materials. Recent experiments have reported noncollinear magnetic states in moiréCrI3, particularly focusing on twisted double bilayer (tDB) and double trilayer (tDT) configurations. However, atomistic simulations of moiréCrI3have largely been limited to the bilayer case.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China.
Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we implement a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!