Bone strength depends on several material and structural properties, but findings concerning the best predictors of bone mechanical performance are conflicting. The aim of this study was to investigate how a broad set of bone properties in the proximal femur are influenced by age and hormonal status, and how these properties together determine bone strength. Twenty-five Wistar rats were ovariectomized (OVX, n = 13) or sham operated (SHAM, n = 12) at 5 months of age, and killed after 9 months. Another group of rats was killed at 5 months as baseline control (BSL, n = 7). At sacrifice, serum 17β-estradiol and bone turnover marker concentrations were determined in the serum. Both femurs were collected for assessment of trabecular microarchitecture, femoral neck geometry, radiographic absorptiometry, calcium and phosphate content, and biomechanical properties. While stiffness was mostly associated with proximal femur trabecular microarchitecture and mineralization degree, bone strength was mostly linked to bone size and femoral neck geometry, which predicted almost 50% of its variance. Despite the decrease in cortical and trabecular bone as well as in mineralization degree following estrogen loss, bone strength was not reduced in OVX animals compared to BSL or sham-operated rats. This was due to a change in femoral neck geometry as well as to an increase in femur size in OVX, which apparently compensated their lower bone volume and mineral content, thereby preserving bone strength. Estrogen loss leads to a deterioration of bone tissue quality, but bone strength was preserved at the expense of geometric adaptations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00774-011-0308-2DOI Listing

Publication Analysis

Top Keywords

bone strength
24
bone
14
proximal femur
12
femoral neck
12
neck geometry
12
bone properties
8
killed months
8
trabecular microarchitecture
8
mineralization degree
8
estrogen loss
8

Similar Publications

Calcium requirements in growing Japanese quail from 21 to 35 days post-hatch.

Poult Sci

December 2024

Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, 98661-5538, Iran. Electronic address:

An experiment was conducted to estimate the optimal calcium (Ca) requirement for growth performance and bone health in quail from 21 to 35 days posthatch. Five dietary treatments containing 0.45, 0.

View Article and Find Full Text PDF

The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method.

View Article and Find Full Text PDF

Rheumatoid Arthritis (RA) is an autoimmune, chronic, systemic inflammatory disease that causes redness, swelling, stiffness, and joint pain. It is a long-lasting disease that can have a widespread impact on the body, often affecting the hands, feet, and wrists. The immune cells, such as dendritic cells, T cells, B cells, macrophages, and neutrophils, play a significant role in bone degradation and inflammation.

View Article and Find Full Text PDF

Purpose: Bone cement-reinforced fenestrated pedicle screws (FPSs) have been widely used in the internal fixation and repair of the spine with osteoporosis in recent years and show significant improvement in fixation strength and stability. However, compared with conventional reinforcement methods, the advantages of bone cement-reinforced FPSs remain undetermined. This article compares the effects of fenestrated and conventional pedicle screws (CPSs) combined with bone cement in the treatment of osteoporosis.

View Article and Find Full Text PDF

Effect of molecular weight and distribution of bovine bone gelatin on the cross-linking gelation induced by transglutaminase.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:

In this work, six bovine bone gelatin (type B) samples with varying molecular weight (MW) fractions, comprising α-chains, high- and low-MW fractions, were prepared using ethanol precipitation and pH adjustment. The influence of molecular weight distribution (MWD) on gelatin gel strength was examined, along with the effects of these different MW fractions on microbial transglutaminase (MTGase) cross-linking gelatin. The results showed that, without MTGase treatment, high-MW fractions acted as key fillers in the formation of gelatin gel networks, while α-chains and their aggregates played a central role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!