RbNd(WO(4))(2) was investigated by high pressure Raman spectroscopy in the 0.1-12.3 GPa pressure interval. The assignment of modes was made based on lattice dynamics calculations and the results of these calculations helped us to also discuss the high pressure behavior of phonon spectra in this material. Our results show that a double oxygen bridge plays a fundamental role in the vibrational properties of this system. A density functional theory (DFT) calculation of hydrostatic pressure effects on RbNd(WO(4))(2) was performed in order to understand the effect of internal bond changes on the vibrational properties of RbNd(WO(4))(2). No pressure induced structural phase transition was observed in the Raman study at room temperature, and the DFT calculation (T = 0 K) is consistent with this result. The anomalous softening of the bridge stretching mode at 770 cm(-1) was attributed to the decrease of W-O1-W bond angle with increasing pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/23/40/405901 | DOI Listing |
J Phys Chem B
January 2025
Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-590 Łódź, Poland.
Photocycloreversion reactions of three diarylethene derivatives whose structures differ only in the placement of two sulfur atoms in the cyclopentene rings are investigated. Despite the minuscule differences between the molecules, both the yields and times of the photoreactions vary considerably. Using UV-vis and infrared femtosecond spectroscopy and quantum chemical dynamics simulations, we elucidate the relationships among the quantum yield, electronic and vibrational relaxation time, and structural properties of the dithienylethene photoswitches.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081, China.
Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Institute of Exact and Naturals Sciences, Federal University of Pará, 66075-110 Belém, PA, Brazil.
Chalcones are organic substances that have diverse biological activities and exhibit potential for the treatment of various diseases. The properties of these substances depend on the type and position of the functional group attached to their aromatic rings. As a result, in this work the chalcone (2E)-1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one (CHO) was investigated by Raman spectroscopy and computational calculations at high pressures with the objective of analyzing its structural stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!