In response to DNA damage, transcription is blocked by inhibition of RNA polymerase II activity. The regulation of a preexisting pool of mRNAs, therefore, plays a key role in DNA repair, cell cycle arrest, or inhibition of differentiation. THOC5 is a member of the THO complex and plays a role in the export of a subset of mRNA, which plays an important role in hematopoiesis and maintaining primitive cells. Since three serine residues in the PEST domain of THOC5 have been shown to be directly phosphorylated by ataxia-telangiectasia-mutated (ATM) kinase, we examined the THOC5-dependent mRNA export under DNA damage. We show here that DNA damage drastically decreased the cytoplasmic pool of a set of THOC5-dependent mRNAs and impaired the THOC5/mRNA complex formation. The mRNP complex formed with nonphosphorylation mutant (S307/312/314A) THOC5, but not with a C-terminal deletion mutant after DNA damage, suggesting that the C-terminal domain of THOC5, but not its phosphorylation in the PEST domain, is necessary for the regulation of the mRNA-binding potency of THOC5. The cytoplasmic THOC5-dependent mRNAs were recovered by treatment with ATM kinase-specific or p53-specific siRNA, as well as by treatment with ATM kinase inhibitor, KU55933, under DNA damage conditions, suggesting that the ATM-kinase-p53 pathway is involved in this response to the DNA damage. Furthermore, the treatment with KU55933 blocked DNA damage-induced THOC5mRNP complex dissociation, indicating that activation of ATM kinase suppresses the ability of THOC5 to bind to its target mRNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198589 | PMC |
http://dx.doi.org/10.1261/rna.2820911 | DOI Listing |
Photochem Photobiol Sci
January 2025
Department of Prevention and Information, Danish Cancer Society, Copenhagen, Denmark.
Background: The incidence of skin cancer among Danes is one of the highest in the world. Most skin cancers are, however, avoidable with sun protection and reduction of exposure. One way to increase awareness could be through personal biofeedback information about skin DNA damage.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.
Mechanistic Monte Carlo simulations have proven invaluable in tackling complex challenges in radiobiology, for example for protecting astronauts from solar particle events (SPEs) during deep space missions which remains an underexplored area. In this study, the Geant4-DNA Monte Carlo code was used to assess the DNA damage caused by SPEs and evaluate the protective effectiveness of a multilayer shelter. By examining the February 1956 and October 1989 SPEs-two extreme cases-the results showed that the proposed shelter reduced DNA damage by up to 57.
View Article and Find Full Text PDFToxicol Ind Health
January 2025
Department of of Toxicology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Turkey.
Di-2-(ethylhexyl)phthalate (DEHP) is a phthalate derivative used extensively in a wide range of materials, such as medical devices, toys, cosmetics, and personal care products. Many mechanisms, including epigenetics, may be involved in the effects of phthalates on brain development. In this study, Sprague-Dawley male rats were obtained 21-23 days after their birth (post-weaning) and were exposed to DEHP during the prepubertal period with low-dose DEHP (DEHP-L, 30 mg/kg/day) and high-dose DEHP (DEHP-H, 60 mg/kg/day, 37 days) until the end of adolescence (PND 60).
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Chemotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China.
Tumour cells possess a multitude of chemoresistance mechanisms, which could plausibly contribute to the ineffectiveness of chemotherapy. O-methylguanine-DNA methyltransferase (MGMT) is an important effector protein associated with Temozolomide (TMZ) resistance in various tumours. To some extent, the expression level of MGMT determines the sensitivity of cells to TMZ, but the mechanism of its expression regulation has not been fully elucidated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
Navigating complex extracellular environments requires extensive deformation of cells and their nuclei. Most in vitro systems used to study nuclear deformations impose whole-cell confinement that mimics the physical crowding experienced by cells during 3D migration through tissues. Such systems, however, do not reproduce the types of nuclear deformations expected to occur in cells that line tissues such as endothelial or epithelial cells whose physical confinement stems principally from the topography of their underlying basement membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!