The p19ARF tumor suppressor limits ribosome biogenesis and responds to hyperproliferative signals to activate the p53 checkpoint response. Although its activation of p53 has been well characterized, the role of ARF in restraining nucleolar ribosome production is poorly understood. Here we report the use of a mass spectroscopic analysis to identify protein changes within the nucleoli of Arf-deficient mouse cells. Through this approach, we discovered that ARF limited the nucleolar localization of the RNA helicase DDX5, which promotes the synthesis and maturation of rRNA, ultimately increasing ribosome output and proliferation. ARF inhibited the interaction between DDX5 and nucleophosmin (NPM), preventing association of DDX5 with the rDNA promoter and nuclear pre-ribosomes. In addition, Arf-deficient cells transformed by oncogenic RasV12 were addicted to DDX5, because reduction of DDX5 was sufficient to impair RasV12-driven colony formation in soft agar and tumor growth in mice. Taken together, our findings indicate that DDX5 is a key p53-independent target of the ARF tumor suppressor and is a novel non-oncogene participant in ribosome biogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206203 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-11-1472 | DOI Listing |
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Third People's Hospital of Longgang District of Shenzhen, Shenzhen, Guangdong 518020, China.
Objectives: To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade.
Methods: Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR.
BMC Genomics
January 2025
Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Bijie, Guizhou Province, 551700, China.
Background: Temperature is a key determinant of ectotherms distribution and growth. During the Eriocheir sinensis breeding process, it was observed that crabs in high latitudes and altitude areas with low temperatures undergo diapause, they would overwinter and continue to grow into three-year-old individuals, whose final body size is significantly larger than the normal two-year-old crabs. The hepatopancreas is responsible for maintaining the nutritional balance and energy required for the crab survival.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.
Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.
View Article and Find Full Text PDFMol Oncol
January 2025
Institut Curie, Inserm U932 - Immunity and Cancer, Paris, France.
Transposable elements provide material for novel gene formation. In particular, DNA transposons have contributed several essential genes involved in various physiological or pathological conditions. Here, we discuss recent findings by Tu et al.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!