Dielectric and piezoelectric properties in the lead-free system Na0.5K0.5NbO3-BiScO3-LiTaO3.

IEEE Trans Ultrason Ferroelectr Freq Control

Institute for Materials Research, University of Leeds, Leeds, UK.

Published: September 2011

Phase relations, dielectric and piezoelectric properties are reported for the ternary system 98%[(1 - x) (Na(0.5)K(0.5)NbO(3))-x(LiTaO(3))]-2%[BiScO(3)] for compositions x ≤ 10 mol% LiTaO(3). The phase content at room-temperature changed from mixed phase, monoclinic + tetragonal, for unmodified 98%(Na(0.5)K(0.5)NbO(3))-2%(BiScO(3)), to tetragonal phase for compositions >2 mol% LiTaO(3). Curie peaks at 360 to 370°C were observed for all compositions, but peaks became diffuse at x ≥ 3 mol%, and two dielectric peaks, at 370 and 470°C, were observed for 5 mol% LiTaO(3). Phase segregation, and finite size affects associated with the core-shell structure, account for the occurrence of two dielectric peaks in 5 mol% LiTaO(3), and diffuse dielectric behavior. The value of d(33) piezoelectric charge coefficient increased from ~160 pC/N for 0 mol% LiTaO(3) to 205 to 214 pC/N for 1 to 2 mol% LiTaO3 solid solutions, before falling sharply at 3 mol% LiTaO(3). TEM-EDX analysis revealed core-shell grain structures with segregation of Bi, Sc, and Ta in the outer ~100-nm shell of the 5 mol% LT sample.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2011.2018DOI Listing

Publication Analysis

Top Keywords

mol% litao3
28
mol%
9
dielectric piezoelectric
8
piezoelectric properties
8
litao3 phase
8
dielectric peaks
8
pc/n mol%
8
litao3
7
dielectric
5
phase
5

Similar Publications

Article Synopsis
  • The paper combines density functional theory (DFT) and experimental methods to study the properties of undoped and Er-doped lithium tantalate (LiTaO:Er) as fluorescent probes.
  • DFT calculations include electronic and optical properties, with specific attention to the effects of Er doping at 4.167 mol. %, using both generalized gradient approximation and hybrid functional methods for accuracy.
  • Experimental techniques like X-ray diffraction, Scanning Electron Microscopy, and photoluminescence confirm the synthesis and properties of LiTaO:Er nanoparticles, highlighting strong emissions in visible and near-infrared areas, closely aligning with theoretical predictions.
View Article and Find Full Text PDF

We theoretically and experimentally investigate multistep parametric processes in broadband optical parametric generators (OPGs) based on periodically poled 1 mol. % MgO-doped stoichiometric LiTaO3. We demonstrate that parametric collateral processes may deplete or enhance spectral portions of the OPG output, depending on pump pulse duration.

View Article and Find Full Text PDF

A phase-diagram for the Na(0.5)K(0.5)NbO(3)-LiTaO(3) solid solution series (NKN-LT) is presented for compositions ≤ 10 mol% LT, based on the combined results of temperaturevariable X-ray powder diffraction and dielectric measurements.

View Article and Find Full Text PDF

Phase relations, dielectric and piezoelectric properties are reported for the ternary system 98%[(1 - x) (Na(0.5)K(0.5)NbO(3))-x(LiTaO(3))]-2%[BiScO(3)] for compositions x ≤ 10 mol% LiTaO(3).

View Article and Find Full Text PDF

We report on broadband gain in an optical parametric generator based on periodically poled 1 mol% magnesium-doped stoichiometric LiTaO3 (PPMg:SLT). More than an octave-spanning parametric gain, stretching from near to mid-infrared, is generated by pumping the crystals close to the point where, at parametric degeneracy, the waves experience zero group-velocity dispersion. Using a picosecond Ti:sapphire source, we measured the broadest parametric gain bandwidths, 180 THz at 10 dB, in PPMg:SLT gratings with a period of 25 µm pumped at 860 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!