AMPK activation inhibits apoptosis and tau hyperphosphorylation mediated by palmitate in SH-SY5Y cells.

Brain Res

Department of Food and Nutrition, Seoul National University, 599 Gwanak-ro, Gwanak-Gu, Seoul, 151-742, Republic of Korea.

Published: October 2011

Obesity and diabetes have been shown to be associated with cognitive impairment or early neurodegeneration. However, the cellular mechanisms that link between these two pathologies have not been clarified. In this study, we treated SH-SY5Y human neuroblastoma cells with palmitate and observed its effect on cell apoptosis and tau hyperphosphorylation. Dose- and time-dependent effects of palmitate on apoptosis were observed. Palmitate treatment induced endoplasmic reticulum (ER) stress, determined by the expression of spliced X-box binding protein 1 (XBP-1) mRNA and immunoglobin heavy chain-binding protein (BiP). We also observed increases in c-Jun N-terminal kinase (JNK) activation and tau hyperphosphorylation in response to palmitate. Although palmitate did not impair insulin signaling as shown by the immunoblotting analysis of AKT phosphorylation, it did inactivate AMP-activated protein kinase (AMPK). Activation of AMPK by N(1)-(β-d-Ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR), significantly reduced the apoptosis of cells treated with palmitate. AICAR also significantly inhibited ER stress, resulting in reduced tau hyperphosphorylation in cells treated with palmitate. Similarly, A769662, a direct activator of AMPK, also abolished the ER stress-mediated apoptosis and tau hyperphosphorylation. Therefore, these data suggest that palmitate triggers ER stress-mediated lipotoxicity and that AMPK activation inhibits apoptosis and tau hyperphosphorylation mediated by palmitate in SH-SY5Y cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2011.08.059DOI Listing

Publication Analysis

Top Keywords

tau hyperphosphorylation
24
apoptosis tau
16
ampk activation
12
palmitate
10
activation inhibits
8
inhibits apoptosis
8
hyperphosphorylation mediated
8
mediated palmitate
8
palmitate sh-sy5y
8
sh-sy5y cells
8

Similar Publications

Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease.

Cell Rep

December 2024

School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. Electronic address:

Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples.

View Article and Find Full Text PDF

Background: Applying single-cell RNA sequencing (scRNA-seq) to the study of neurodegenerative disease has propelled the field towards a more refined cellular understanding of Alzheimer's disease (AD); however, directly linking protein pathology to transcriptomic changes has not been possible at scale. Recently, a high-throughput method was developed to generate high-quality scRNA-seq data while retaining cytoplasmic proteins. Tau is a cytoplasmic protein and when hyperphosphorylated is integrally involved in AD progression.

View Article and Find Full Text PDF

Background: Heterogeneity in the progression of clinical dementia poses a significant challenge, impeding the effectiveness of current therapies for Alzheimer's disease (AD). To decipher the molecular mechanisms governing heterogeneity in AD progression that remains a critical knowledge gap precluding rational therapeutic design, we investigated the biochemical and biophysical properties of tau present in the inferior temporal gyrus (ITG) and prefrontal cortex (PFC) brain regions of AD patients who had varying disease progression rates. To explore gene expression changes in the ITG which are associated with tau pathology and cognitive decline, we used RNA sequencing for molecular characterization of patients displaying tau and clinical heterogeneity.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Afe Babalola University, Ado-Ekiti, Ekiti, Nigeria.

Background: Stress during pregnancy and postpartum periods has been associated with short-term cognitive deficits with potential long-term Alzheimer's disease (AD) risk. However, the biological mechanisms mediating these effects remain poorly understood. This study investigated the impacts of recurrent heat and simulated refugee camp stress across pregnancy and the postpartum period on cognition, affective behaviour, and AD neuropathological changes in primiparous rats.

View Article and Find Full Text PDF

Background: Hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) brain tissue is a complex mix of multiple tau species that are variably phosphorylated on up to 55 epitopes. Emerging studies suggest that phosphorylation of specific epitopes may alter the role of tau. The role of specific pTau species can be explored through protein interaction ("interactome") studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!