RNA interference (RNAi) mechanism targets viral RNA for degradation. To test whether RNAi gene products contributed to viral RNA recombination, a series of Arabidopsis thaliana RNAi-defective mutants were infected with Brome mosaic virus (BMV) RNAs that have been engineered to support crossovers within the RNA3 segment. Single-cross RNA3-RNA1, RNA3-RNA2, and RNA3-RNA3 recombinants accumulated in both the wild-type (wt) and all knock-out lines at comparable frequencies. However, a reduced accumulation of novel 3' mosaic RNA3 recombinants was observed in ago1, dcl2, dcl4, and rdr6 lines but not in wt Col-0 or the dcl3 line. A BMV replicase mutant accumulated a low level of RNA3-RNA1 single-cross recombinants in Col-0 plants while, in a dcl2 dcl4 double mutant, the formation of both RNA3-RNA1 and mosaic recombinants was at a low level. A control infection in the cpr5-2 mutant, a more susceptible BMV Arabidopsis host, generated similar-to-Col-0 profiles of both single-cross and mosaic recombinants, indicating that recombinant profiles were, to some extent, independent of a viral replication rate. Also, the relative growth experiments revealed similar selection pressure for recombinants among the host lines. Thus, the altered recombinant RNA profiles have originated at the level of recombinant formation rather than because of altered selection. In conclusion, the viral replicase and the host RNAi gene products contribute in distinct ways to BMV RNA recombination. Our studies reveal that the antiviral RNAi mechanisms are utilized by plant RNA viruses to increase their variability, reminiscent of phenomena previously demonstrated in fungi.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-05-11-0137 | DOI Listing |
Nucleic Acids Res
January 2025
Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France.
The green peach aphid () is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family ), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5'- and 3'-inverted terminal repeats.
View Article and Find Full Text PDFInsect Mol Biol
December 2024
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
Insect NF-κB-like factor, Relish, is activated by viral infection and induces the production of antiviral proteins. In this study, we performed a transcriptomic analysis of BmE cells expressing the active form of BmRelish (BmRelish) and identified BmVago-like as the most strongly-induced secreted-protein. Expression of BmVago-like was specifically triggered by Bombyx mori Nucleo Polyhedro Virus (BmNPV) infection and regulated by BmSTING-BmRelish pathway.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany.
Mol Ther
January 2025
State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China. Electronic address:
Infections caused by coronaviruses are persistent threats to human health in recent decades, necessitating the development of innovative anti-coronaviral therapies. RNA interference (RNAi) is a conserved cell-intrinsic antiviral mechanism in diverse eukaryotic organisms, including mammals. To counteract, many viruses encode viral suppressors of RNAi (VSRs) to evade antiviral RNAi, implying that targeting VSRs could be a promising strategy to develop antiviral therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!