Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together these results furnish a detailed description of the factors that influence the tradeoff between a single correctly aligned but poorly polarized stable steady-state solution versus multiple more highly polarized stable steady-state solutions that may be incorrectly aligned with the external gradient.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806509 | PMC |
http://dx.doi.org/10.3934/mbe.2011.8.1135 | DOI Listing |
Infect Dis Model
June 2025
Department of Mathematical Sciences, P.O. Box 15551, UAE Emirates Center for Mobility Research, United Arab Emirates University, Al Ain, United Arab Emirates.
This research investigates a novel approach to modeling an SIR epidemic in a heterogeneous environment by imposing certain restrictions on population mobility. Our study reveals the influence of partially restricting the mobility of the infected population, who are allowed to diffuse locally and can be modeled using random dispersion. In contrast, the non-infective population, which includes susceptible and recovered individuals, has more freedom in their movements.
View Article and Find Full Text PDFSci Rep
January 2025
ENET Centre, VSB-Technical University of Ostrava, Ostrava, 708 00, Czech Republic.
Steam condensers are vital components of thermal power plants, responsible for converting turbine exhaust steam back into water for reuse in the power generation cycle. Effective pressure regulation is crucial to ensure operational efficiency and equipment safety. However, conventional control strategies, such as PI, PI-PDn and FOPID controllers, often struggle to manage the nonlinearities and disturbances inherent in steam condenser systems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
Hydroxypropyl cellulose (HpC) forms a liquid crystalline phase and is thought to have a rod-like shape in aqueous solution. The viscoelastic behaviors of aqueous solutions of HpC samples with average molar substitution numbers ( ∼ 3.8) and weight-average molar masses ( = 36-740 kg mol) were examined over a wide concentration () range, and the results were discussed based on a concept of rod particle suspension rheology.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!