The hunt for the 3' endonuclease.

Wiley Interdiscip Rev RNA

Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Published: March 2012

Pre-mRNAs are typically processed at the 3(') end by cleavage/polyadenylation. This is a two-step processing reaction initiated by endonucleolytic cleavage of pre-mRNAs downstream of the AAUAAA sequence or its variant, followed by extension of the newly generated 3(') end with a poly(A) tail. In metazoans, replication-dependent histone transcripts are cleaved by a different 3(') end processing mechanism that depends on the U7 small nuclear ribonucleoprotein and the polyadenylation step is omitted. Each of the two mechanisms occurs in a macromolecular assembly that primarily functions to juxtapose the scissile bond with the 3(') endonuclease. Remarkably, despite characterizing a number of processing factors, the identity of this most critical component remained elusive until recently. For cleavage coupled to polyadenylation, much needed help was offered by bioinformatics, which pointed to CPSF-73, a known processing factor required for both cleavage and polyadenylation, as the possible 3(') endonuclease. In silico structural analysis indicated that this protein is a member of the large metallo-β-lactamase family of hydrolytic enzymes and belongs to the β-CASP subfamily that includes several RNA and DNA-specific nucleases. Subsequent experimental studies supported the notion that CPSF-73 does function as the endonuclease in the formation of polyadenylated mRNAs, but some controversy still remains as a different cleavage and polyadenylation specificity factor (CPSF) subunit, CPSF-30, displays an endonuclease activity in vitro while recombinant CPSF-73 is inactive. Unexpectedly, CPSF-73 as the 3(') endonuclease in cleavage coupled to polyadenylation found a strong ally in U7-dependent processing of histone pre-mRNAs, which was shown to utilize the same protein as the cleaving enzyme. It thus seems likely that these two processing reactions evolved from a common mechanism, with CPSF-73 as the endonuclease.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wrna.33DOI Listing

Publication Analysis

Top Keywords

cleavage coupled
8
coupled polyadenylation
8
cleavage polyadenylation
8
cpsf-73 endonuclease
8
processing
6
endonuclease
6
cleavage
5
polyadenylation
5
cpsf-73
5
hunt endonuclease
4

Similar Publications

A novel mechanism for -heteroaryl C-H functionalization via dearomative addition-hydrogen autotransfer is described. Upon exposure to the catalyst derived from RuHCl(CO)(PPh) and Xantphos, dienes - suffer hydroruthenation to form allylruthenium nucleophiles that engage in -heteroaryl addition-β-hydride elimination to furnish branched products of C-C coupling - and -. Oxidative cleavage of isoprene adducts , , , and followed by ruthenium-catalyzed dynamic kinetic asymmetric ketone reduction provides enantiomerically enriched -heteroarylethyl alcohols - and, therefrom, -heteroarylethyl amines -.

View Article and Find Full Text PDF

G protein-coupled receptor 40 (GPR40) is gaining recognition as a potential therapeutic target for several metabolic disturbances, such as hyperglycemia and excessive inflammation. GPR40 is expressed in various tissues, including the heart; however, its specific roles in cardiomyocytes remain unknown. The objective of the present study was to investigate whether treatment with AM1638, a GPR40-full agonist, reduces palmitate-mediated cell damage in H9c2 rat cardiomyocytes.

View Article and Find Full Text PDF

Synthetic Studies on Vitamin D Derivatives with Diverse but Selective Biological Activities.

Chem Pharm Bull (Tokyo)

January 2025

Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.

2α-Functionalization of 1α,25-dihydroxyvitamin D (active vitamin D) A-ring enhances binding affinity for the vitamin D receptor (VDR) and prolongs the half-life in target cells due to gaining resistance to CYP24A1-dependant metabolism. The wide variety of modified A-ring precursor enynes for Trost coupling with CD-ring bromoolefin were synthesized from d-glucose. The A-ring modification provided potent, selective biological activities without calcemic side-effects in vivo; for example, 2α-(3-hydroxypropyl)-19-nor-1α,25-dihydroxyvitamin D (MART-10) exhibits potent antitumor activity (0.

View Article and Find Full Text PDF

Proteomic analysis of the nonstructural protein 2-host protein interactome reveals a novel regulatory role of SH3 domain-containing kinase-binding protein 1 in porcine reproductive and respiratory syndrome virus replication and apoptosis.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China. Electronic address:

Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.

View Article and Find Full Text PDF

Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!