Ruthenium-indazole complexes are promising anticancer agents undergoing clinical trials. KP1339 is administered intravenously (i.v.), where serum proteins are the first available biological binding partners. In order to gain a better insight into the mode of action, mice were treated with different doses of KP1339 i.v. and sacrificed at different time points. The blood plasma was isolated from blood samples and analyzed by capillary zone electrophoresis (CZE) and size exclusion/anion exchange chromatography (SEC-IC) both combined on-line to inductively coupled plasma-mass spectrometry (ICP-MS). The performance of the analytical methodology was compared and the interaction of KP1339 with mouse plasma proteins characterized in vivo. Interestingly, the samples of the mice treated with 50 mg kg(-1) and terminated after 24 h showed a ca. 4-fold lowered albumin content and increased ruthenation of albumin aggregates as compared to the untreated control group and the 40 mg kg(-1) group. The majority of Ru was bound to albumin and the stoichiometry of the KP1339 protein binding was determined through the molar Ru/S ratio. In general, good agreement of the data obtained with both techniques was achieved and the SEC-IC method was found to be more sensitive as compared to the CZE-ICP-MS approach, whereas the latter benefits from the shorter analysis time and lower sample consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1mt00055aDOI Listing

Publication Analysis

Top Keywords

kp1339 mouse
8
mouse plasma
8
mice treated
8
kp1339
5
lc- cze-icp-ms
4
cze-icp-ms approaches
4
approaches vivo
4
vivo analysis
4
analysis anticancer
4
anticancer drug
4

Similar Publications

Synthesis and preclinical evaluation of BOLD-100 radiolabeled with ruthenium-97 and ruthenium-103.

Dalton Trans

March 2024

Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.

BOLD-100 (formerly IT-139, KP1339), a well-established chemotherapeutic agent, is currently being investigated in clinical trials for the treatment of gastric, pancreatic, colorectal, and bile duct cancer. Despite numerous studies, the exact mode of action is still the subject of discussions. Radiolabeled BOLD-100 could be a powerful tool to clarify pharmacokinetic pathways of the compound and to predict therapy responses in patients using nuclear molecular imaging prior to the therapy.

View Article and Find Full Text PDF

Synthesis and Preclinical Evaluation of Radiolabeled [Ru]BOLD-100.

Pharmaceutics

November 2023

Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.

The first-in-class ruthenium-based chemotherapeutic agent BOLD-100 (formerly IT-139, NKP-1339, KP1339) is currently the subject of clinical evaluation for the treatment of gastric, pancreatic, colorectal and bile duct cancer. A radiolabeled version of the compound could present a helpful diagnostic tool. Thus, this study investigated the pharmacokinetics of BOLD-100 in more detail to facilitate the stratification of patients for the therapy.

View Article and Find Full Text PDF

Pharmacological Activities of Ruthenium Complexes Related to Their NO Scavenging Properties.

Int J Mol Sci

August 2016

Callerio Foundation Onlus, via A. Fleming 22-31, 34127 Trieste, Italy.

Angiogenesis is considered responsible for the growth of primary tumours and of their metastases. With the present study, the effects of three ruthenium compounds, potassiumchlorido (ethylendiamminotetraacetate)rutenate(III) (RuEDTA), sodium (bis-indazole)tetrachloro-ruthenate(III), Na[trans-RuCl₄Ind₂] (KP1339) and trans-imidazoledimethylsulphoxidetetrachloro-ruthenate (NAMI-A), are studied in vitro in models mimicking the angiogenic process. The ruthenium compounds reduced the production and the release of nitrosyls from either healthy macrophages and immortalized EA.

View Article and Find Full Text PDF

Biodistribution of the novel anticancer drug sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] KP-1339/IT139 in nude BALB/c mice and implications on its mode of action.

J Inorg Biochem

July 2016

University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090, Vienna, Austria; University of Vienna, Research Platform 'Translational Cancer Therapy Research', Waehringer Str. 42, A-1090, Vienna, Austria; University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand. Electronic address:

The ruthenium complex sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (KP-1339/IT139) has entered clinical trials as the more soluble alternative to the indazolium compound KP1019. In order to get insight into its distribution and accumulation throughout a living organism, KP-1339/IT139 was administered intravenously in non-tumor bearing nude BALB/c mice and the Ru content in blood cells and plasma, bone, brain, colon, kidneys, liver, lung, muscle, spleen, stomach and thymus was determined at several time points. The Ru concentration in blood cells and plasma was found to increase slightly within the first hours of analysis, with the Ru concentration being 3-times higher in plasma compared to blood cells.

View Article and Find Full Text PDF

To increase electrochemotherapy (ECT) applicability, the effectiveness of new drugs is being tested in combination with electroporation. Among them two ruthenium(III) compounds, (imH)[trans-RuCl4(im)(DMSO-S)] (NAMI-A) and Na[trans-RuCl4(ind)2] (KP1339), proved to possess increased antitumor effectiveness when combined with electroporation. The objective of our experimental work was to determine influence of electroporation on the cytotoxic and antitumor effect of a ruthenium(III) compound with hampered transmembrane transport, (imH)[trans-RuCl4(im)2] (KP418) in vitro and in vivo and to determine changes in metastatic potential of cells after ECT with KP418 in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!