Exercise promotes hippocampal neurogenesis and dendritic plasticity while stress shows the opposite effects, suggesting a possible mechanism for exercise to counteract stress. Changes in hippocampal neurogenesis and dendritic modification occur simultaneously in rats with stress or exercise; however, it is unclear whether neurogenesis or dendritic remodeling has a greater impact on mediating the effect of exercise on stress since they have been separately examined. Here we examined hippocampal cell proliferation in runners treated with different doses (low: 30 mg/kg; moderate: 40 mg/kg; high: 50 mg/kg) of corticosterone (CORT) for 14 days. Water maze task and forced swim tests were applied to assess hippocampal-dependent learning and depression-like behaviour respectively the day after the treatment. Repeated CORT treatment resulted in a graded increase in depression-like behaviour and impaired spatial learning that is associated with decreased hippocampal cell proliferation and BDNF levels. Running reversed these effects in rats treated with low or moderate, but not high doses of CORT. Using 40 mg/kg CORT-treated rats, we further studied the role of neurogenesis and dendritic remodeling in mediating the effects of exercise on stress. Co-labelling with BrdU (thymidine analog) /doublecortin (immature neuronal marker) showed that running increased neuronal differentiation in vehicle- and CORT-treated rats. Running also increased dendritic length and spine density in CA3 pyramidal neurons in 40 mg/kg CORT-treated rats. Ablation of neurogenesis with Ara-c infusion diminished the effect of running on restoring spatial learning and decreasing depression-like behaviour in 40 mg/kg CORT-treated animals in spite of dendritic and spine enhancement. but not normal runners with enhanced dendritic length. The results indicate that both restored hippocampal neurogenesis and dendritic remodelling within the hippocampus are essential for running to counteract stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174166 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024263 | PLOS |
Front Neural Circuits
December 2024
Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.
The Golgi apparatus is a central hub in the intracellular secretory pathway. By positioning in the specific intracellular region and transporting materials to spatially restricted compartments, the Golgi apparatus contributes to the cell polarity establishment and morphological specification in diverse cell types. In neurons, the Golgi apparatus mediates several essential steps of initial neural circuit formation during early brain development, such as axon-dendrite polarization, neuronal migration, primary dendrite specification, and dendritic arbor elaboration.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea.
PLoS Genet
December 2024
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America.
Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches.
View Article and Find Full Text PDFNeural Regen Res
December 2024
Institute of Clinical Neuroanatomy, Goethe-University Frankfurt, NeuroScience Center, Frankfurt am Main, Germany.
The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage. The latter involves global alterations, making understanding plastic responses triggered by local damage difficult. One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche, the subgranular zone, and beyond neurogenesis, newly born granule cells may maintain a "young" phenotype throughout life, adding to the plastic nature of the structure.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Cell Biology, Harvard Medical School, Boston, MA 02115.
Plasma membrane protein degradation and recycling are regulated by the endolysosomal system, wherein endocytic vesicles bud from the plasma membrane into the cytoplasm and mature into endosomes and then degradative lysosomes. As such, the endolysosomal system plays a critical role in determining the abundance of proteins on the cell surface and influencing cellular identity and function. Highly polarized cells, like neurons, rely on the endolysosomal system for axonal and dendritic specialization and synaptic compartmentalization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!