We report broadband antireflective disordered subwavelength structures (d-SWSs), which were fabricated on 4-inch silicon wafers by spin-coating Ag ink and metal-assisted chemical etching. The antireflection properties of the d-SWSs depend on its dimensions and heights, which were changed by the sintering temperature of the spin-coated Ag ink and etching time. The fabricated d-SWSs drastically reduced surface reflection over a wide range of wavelengths and incident angles, providing good surface uniformity. The d-SWSs with the most appropriate geometry for practical solar cell applications exhibit only 1.23% solar-weighted reflectance in the wavelength range of 300-1100 nm and average reflectance <5% up to an incident angle of 55° in the wavelength range of 300-2500 nm. This simple and low-cost nanofabrication method for antireflection could be of great importance in optical device applications because it allows mass production without any lithography processes or sophisticated equipment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.0A1109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!