Large aspect ratio 3D microstructures (arrays of square posts and linear rectangular gratings) fabricated in a number of azobenzene-containing materials by soft lithography were manipulated by a single beam of polarized light. The materials exhibited different response to the beam orientation and the direction of light polarization. An elongation of the square posts both along and perpendicular to the polarization plane was observed depending on material. Reversibility of the deformation has been demonstrated. Broadening of the hills, amplitude and shape changing were observed for linear gratings. A slanted expose led to the blazed asymmetric structures. Some aspects of light-induced deformation mechanisms in azobenzene-containing materials are discussed. The approach developed in the paper can be useful both for the understanding of mass transport mechanism in azobenzene-containing materials and for the fabrication of diffracted optical structures.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.018687DOI Listing

Publication Analysis

Top Keywords

azobenzene-containing materials
16
square posts
8
materials
5
efficient single-beam
4
single-beam light
4
light manipulation
4
manipulation microstructures
4
azobenzene-containing
4
microstructures azobenzene-containing
4
materials large
4

Similar Publications

Azo-PMA nanopores of sub-20 nm length for unimolecular resolution of nucleic acids and proteins.

Talanta

December 2024

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:

Owing to the facile fabrication and surface modification, the cost-effective polymer nanopores are widely employed in unimolecular determination of biomacromolecules and selective sensing of small molecules, nanoparticles and biomarkers. However, the documented polymer nanochannels are generally microscale in length with low spatial resolution. We herein synthesized azobenzene side-chain polymer (Azo-PMA) and spin-coated on silicon nitride membrane to obtain a polymer film of nanoscale thickness for further nanopore generation via controlled dielectric breakdown (CDB) approach.

View Article and Find Full Text PDF

Main-Chain Azobenzene Poly(ether ester) Multiblock Copolymers for Strong and Tough Light-Driven Actuators.

ACS Appl Mater Interfaces

October 2024

Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

The stimulus-responsive polymeric materials have attracted great research interest, especially those remotely manipulated materials with potential applications in actuators and soft robotics. Here we report a photoresponsive main-chain actuator based on azobenzene poly(ether ester) multiblock copolymer (mBCP) thermoplastic elastomers, (PTAD--PTMO--PTAD), which were synthesized by a cascade polycondensation-coupling ring-opening polymerization method using poly(tetramethylene oxide) (PTMO) and azobenzene-containing cyclic oligoesters (COTADs) as monomers. The thermal, mechanical, and microphase separation behaviors of mBCPs could be flexibly tuned by altering the ratios of soft-to-hard segments and block number ().

View Article and Find Full Text PDF

Being Smarter, Azobenzene-Containing Biomaterial Showing Triple Stimuli-Responsive Phase Change Property to Light, Humidity and Force at Room Temperature.

Adv Healthc Mater

December 2024

Key Laboratory of Optic-electric Sensing and Analystical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.

Multiple stimuli-responsiveness is an attractive property that is studied in physical chemistry and materials chemistry. While, multiple stimuli-responsive phase change in an isothermal way is rarely addressed for functional materials at room temperature. In this study, one azobenzene-containing surfactant AZO is designed for the fabrication of triple stimuli-responsive phase change biomaterial (Alg-AZO) through the electrostatic complexation with natural alginate.

View Article and Find Full Text PDF

Photoresponsive protamine ionic complex towards a smart hemostatic biomaterial.

Int J Biol Macromol

November 2024

Dongguan Children's Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China. Electronic address:

Protamine (PA) is the only licensed antidote for reversing heparin anticoagulation by electrostatically binding with heparin. Efforts have been made on designing various heparin-scavengers, while, it remains a great challenge for gaining the external-stimuli responsive PA-release material. In this study, a generic strategy is developed for fabricating photoresponsive protein materials with the designed azobenzene-containing surfactant.

View Article and Find Full Text PDF

Light patternable colorless liquid crystalline (LC) polymers are promising materials for functional photonic devices with broad applications in optical communication, diffractive optics, and displays. This work reports photoinduced optical anisotropy in thin films of azobenzene-containing (Azo) LC block copolymer supramolecular complexes, which can be decolorized after light patterning providing colorless patterned birefringent polymer films. The supramolecular complexes are prepared via intermolecular pyridine-phenol hydrogen bonding between a low-molecular-weight Azo phenol and host LC AB diblock and ABA triblock copolymers consisted of LC phenylbenzoate (PhM) blocks and poly(vinylpyridine) units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!