Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits.

Opt Express

Institute for Optical Sciences, and the Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.

Published: September 2011

Femtosecond laser (300 fs, 500 kHz, 522 nm) fabrication of optical waveguides in bulk silica glass is extended to waveguide retarders. We study the merits of nanograting orientation (perpendicular or parallel to the waveguide) for generating high and low birefringence waveguides. This is used together with other exposure condition to control the waveguide birefringence between 10⁻⁵ and 10⁻⁴ permitting for the simultaneous fabrication of the waveguides and the tuning of the retardance demonstrating quarter and half-wave retarders in the 1200 nm to 1700 nm spectrum. The wavelength dependence of the birefringence is also characterized over a range of exposure conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.018294DOI Listing

Publication Analysis

Top Keywords

femtosecond laser
8
waveguide retarders
8
laser writing
4
waveguide
4
writing waveguide
4
retarders fused
4
fused silica
4
silica polarization
4
polarization control
4
control optical
4

Similar Publications

Purpose: To investigate the aqueous proteomics and metabolomics in low-energy and high-energy femtosecond laser-assisted cataract surgery (FLACS).

Methods: In this prospective observational study, 72 patients were randomized to 3 groups: low-energy FLACS, high-energy FLACS, and conventional phacoemulsification (controls). Aqueous was collected after femtosecond laser treatment or at the beginning of surgery (controls).

View Article and Find Full Text PDF

Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.

View Article and Find Full Text PDF

This study aims to compare the efficacy and safety of femtosecond laser-assisted implantable collamer lens (ICL) implantation with traditional manual ICL techniques. A retrospective analysis was conducted on patients who underwent ICL implantation at Beijing New Vision Eye Hospital in 2023. Patients (aged 18-45) were matched for gender and refractive error, with forty-two eyes in each group.

View Article and Find Full Text PDF

As an environment-friendly material, graphene oxide nanosheet can effectively improve the polishing surface quality of single crystal diamond workpieces. However, the lubricating and chemical effects of graphene oxide nanosheets have an uncertain impact on the polishing material removal rate. In this paper, the graphene oxide-enhanced hybrid slurry was prepared with good stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!