We report on the performance of a system employing a multi-layer coated mirror creating circularly polarized light in a fully reflective setup. With one specially designed mirror we are able to create laser pulses with an ellipticity of more than ε = 98% over the entire spectral bandwidth from initially linearly polarized Titanium:Sapphire femtosecond laser pulses. We tested the homogeneity of the polarization with beam sizes of the order of approximately 10 cm. The damage threshold was determined to be nearly 400 times higher than for a transmissive quartz-wave plate which suggests applications in high intensity laser experiments. Another advantage of the reflective scheme is the absence of nonlinear effects changing the spectrum or the pulse-form and the scalability of coating fabrication to large aperture mirrors.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.017151DOI Listing

Publication Analysis

Top Keywords

creating circularly
8
circularly polarized
8
polarized light
8
laser pulses
8
light phase-shifting
4
phase-shifting mirror
4
mirror report
4
report performance
4
performance system
4
system employing
4

Similar Publications

The substituent effect has a significant influence on the optical properties of spectral shape, width, and wavelength, and the intensities of the maximum peaks of emission (EMI) and circularly polarized luminescence (CPL). In this work, we conducted a systematic theoretical study to investigate how substituents alter the optical response in the EMI and CPL spectra of three [7]helicene derivatives at the vibronic level. To incorporate the vibronic effect, a state-of-the-art time-dependent (TD) method was used to achieve the fully converged spectra.

View Article and Find Full Text PDF

Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction.

Photochem Photobiol Sci

December 2024

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.

The chirality and chiroptical response of materials have attracted significant attention for their potential to introduce the new science of light-matter interactions. We demonstrate that collective mode formation under modal coupling between localized surface plasmon resonances (LSPRs) with a chiral arrangement and Fabry-Pérot (FP) nanocavity modes can induce chiroptical responses. We fabricated a cluster of isotropic gold nanodisks with a chiral arrangement (gold nano-windmills, Au-NWs) on the FP nanocavities of TiO and Au film.

View Article and Find Full Text PDF

Doping Copper(I) in Ag Cluster for Circularly Polarized OLEDs with External Quantum Efficiency of 26.7 .

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Hetero-metal doping or substitution to create alloy clusters is a highly appealing strategy for improving physicochemical characteristics as well as tailoring optical and electronic properties, although high-yield synthesis of alloy clusters with precise positioning of doped metals is a daunting challenge. Herein, we manifest rational synthesis of chiral alloy cluster enantiomers R/S-AgCu in 85 %-87 % yield by replacing one Ag(I) atom with Cu(I) in homometallic clusters R/S-Ag, achieving circularly polarized luminescence (CPL) with a quantum yield beyond 90 %. As a small energy gap (ca.

View Article and Find Full Text PDF

Circularly polarized light emission from encapsulated aggregation-induced emission achiral luminogen within the supramolecular helical nanofilament networks.

J Colloid Interface Sci

March 2025

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea; Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

Article Synopsis
  • Circularly polarized light emission (CPLE) materials are gaining interest for applications in areas like spintronics.
  • The study demonstrates a new method for activating CPLE in achiral luminogens by utilizing phase separation with helical filaments, which enhances their properties.
  • The chiral environment created by nanoscale spaces allows the helical filaments to impart chirality to the otherwise CPLE-inactive luminogens, making this approach a simpler alternative to complex chemical synthesis.
View Article and Find Full Text PDF

Molecular Imprinting Strategy Enables Circularly Polarized Luminescence Enhancement of Recyclable Chiral Polymer Films.

Small

November 2024

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.

Article Synopsis
  • Circularly polarized luminescence (CPL) is key for advancements in optical displays and information tech, but achieving high performance is challenging due to trade-offs in material properties.
  • The researchers used molecular imprinting technology to create new CPL-active polymer films from achiral fluorene-based polymers, reaching an impressive dissymmetry factor (g) over 4.2 × 10 and high fluorescence quantum yields.
  • The process involves co-assembling polymers with a chiral inducer and an imprinting molecule, leading to stable CPL performance, full-color emission, and the ability to act as microreactors that can dynamically control CPL signals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!