Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel plasmonic waveguide-coupled nanocavity with a monopole antenna is proposed to localize the optical power from a hybrid plasmonic waveguide and subsequently convert it into electrical current. The nanocavity is designed as a Fabry-Pérot waveguide resonator, while the monopole antenna is made of a metallic nanorod directly mounted onto the metallic part of the waveguide terminal which acts as the conducting ground. The nanocavity coincides with the antenna feed sandwiched in between the antenna and the ground. Maximum power from the waveguide can be coupled into, and absorbed in the nanocavity by means of the field resonance in the antenna as well as in the nanocavity. Simulation results show that 42% optical power from the waveguide can be absorbed in a germanium filled nanocavity with a nanoscale volume of 220 × 150 × 60 nm3. The design may find applications in nanoscale photo-detection, subwavelength light focusing and manipulating, as well as sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.19.017075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!