Supermodes for optical transmission.

Opt Express

CREOL: The College of Optics and Photonics, Univ. of Central Florida, Orlando, FL 32826, USA.

Published: August 2011

In this paper, the concept of supermode is introduced for long-distance optical transmission systems. The supermodes exploit coupling between the cores of a multi-core fiber, in which the core-to-core distance is much shorter than that in conventional multi-core fiber. The use of supermodes leads to a larger mode effective area and higher mode density than the conventional multi-core fiber. Through simulations, we show that the proposed coupled multi-core fiber allows lower modal dependent loss, mode coupling and differential modal group delay than few-mode fibers. These properties suggest that the coupled multi-core fiber could be a good candidate for both spatial division multiplexing and single-mode operation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.016653DOI Listing

Publication Analysis

Top Keywords

multi-core fiber
20
optical transmission
8
conventional multi-core
8
coupled multi-core
8
multi-core
5
fiber
5
supermodes optical
4
transmission paper
4
paper concept
4
concept supermode
4

Similar Publications

In this study, we present an unexplored approach for remote focus manipulation using 3D nanoprinted holograms integrated on the end face of multi-core single-mode fibers. This innovative method enables precise focus control within a monolithic metafiber device by allowing light coupled into any of the 37 cores to be precisely focused at predefined locations. Our approach demonstrates significant advances over conventional lenses and offers unique functionalities through computationally designed holograms.

View Article and Find Full Text PDF
Article Synopsis
  • - The multicore fiber amplifier is essential for advanced spatial division multiplexing (SDM) communication, but it has more complex challenges than traditional single-core systems, prompting the search for a more efficient solution.
  • - An innovative triple cladding 13-core Er/Yb co-doped microstructured fiber (13CEYDMOF) is proposed to balance performance factors like efficiency and cost, featuring unique peanut-shaped air holes that improve excitation and reduce fiber size.
  • - Experimental results show that the 13CEYDMOF achieved impressive performance metrics, including an average gain of 23.8 dB and a low noise figure, making it suitable for transmitting 13 spatial channels effectively in the telecommunication band.
View Article and Find Full Text PDF

We report the fabrication and characterization of a multi-core anti-resonant hollow core fiber with low inter-core coupling. The optical losses were 0.03 and 0.

View Article and Find Full Text PDF

Multi-core few-mode fiber based on space division multiplexing technology is widely regarded as the primary solution to the optical communication capacity issue. However, the quality of the communication signal of the multi-core few-mode fiber depends on the degree of energy coupling between the cores. Thus, we propose a heterogeneous sixteen-core four-mode fiber that achieves low inter-core crosstalk, which first employs a combination of concave and convex double-type refractive index profiles.

View Article and Find Full Text PDF

We demonstrate simultaneous radio-/pump-/power-over-fiber transmission using a single multi-core fiber for downlink radio-over-fiber transmission. This scheme not only introduces a remotely pumped optical amplifier to eliminate electrical power amplifiers (PAs) in radio units (RUs) but also drives a high-power photodiode, which is the main component of the RU by power-over-fiber. Using this scheme, we achieved a 20-dB improvement in the RF output signal power using a remotely pumped optical amplifier without electrical PAs in the optically powered RU.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!