All-semiconductor, highly anisotropic metamaterials provide a straightforward path to negative refraction in the mid-infrared. However, their usefulness in applications is restricted by strong frequency dispersion and limited spectral bandwidth. In this work, we show that by stacking multiple metamaterials of varying thickness and doping into one compound metamaterial, bandwidth is increased by 27% over a single-stack metamaterial, and dispersion is reduced.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.19.014990DOI Listing

Publication Analysis

Top Keywords

stacking multiple
8
enhanced bandwidth
4
bandwidth reduced
4
reduced dispersion
4
dispersion stacking
4
multiple optical
4
optical metamaterials
4
metamaterials all-semiconductor
4
all-semiconductor highly
4
highly anisotropic
4

Similar Publications

Gamma-Retroviral (RVVs) and lentiviral vectors (LVVs) represent indispensable tools in somatic gene therapy, mediating the efficient, stable transfer of therapeutic genes into a variety of human target cells. LVVs, in contrast to RVVs, are capable of stably genetically modifying non-proliferating target cells, making them the superior instrument in cell and gene therapy. To date, the LVV manufacturing process employs human embryonic kidney cells (HEK293) and derivatives thereof transiently transfected with multiple plasmids encoding the required viral vector components.

View Article and Find Full Text PDF

3D Vertical Ferroelectric Capacitors with Excellent Scalability.

Nano Lett

January 2025

Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.

Three-dimensional vertically stacked memory is more cost-effective than two-dimensional stacked memory. Vertically stacked memory using ferroelectric materials has great potential not only in high-density memory but also in neuromorphic fields because it secures low voltage and fast operation speed. This paper presents the implementation of a ferroelectric capacitor comprising a vertical two-layer stacked structure composed of a titanium nitride (TiN)/aluminum-doped hafnium oxide/TiN configuration.

View Article and Find Full Text PDF

2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.

View Article and Find Full Text PDF

Effectual CH reclamation from CH/N blends by existing physisorbents in industrialization confronts the adversity of frustrated separation performance, weak structural strength, and restricted scale-up preparation. To solve aforesaid bottlenecks, herein, a strategy is presented to fabricate synergistic strong recognition binding sites in a robust and scalable optimum Cu(pma) with ultramicroporous feature regarding superb CH separation versus N. By virtue of the synergistic contribution of multiple affinities accompanied by enormous potential field overlap of pore restriction, it imparts strong recognition binding toward CH molecules.

View Article and Find Full Text PDF

Chiral recognition of CIAC001 isomers in regulating pyruvate kinase M2 and mitigating neuroinflammation.

Eur J Med Chem

January 2025

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address:

Article Synopsis
  • Chiral recognition is crucial for drug effectiveness, as seen in the CBD derivative CIAC001, which targets pyruvate kinase M2 (PKM2) and shows anti-neuroinflammatory and anti-addiction properties.
  • Four chiral isomers of CIAC001 were synthesized, and it was found that (7S)-(-)-CIAC001 had the strongest binding affinity and anti-inflammatory effects, significantly outperforming its (7R)-(-) counterpart.
  • Molecular dynamics simulations indicated that (7S)-(-)-CIAC001's strong interaction with the PKM2 subunit, specifically with phenylalanine at position 26 (F26), is vital for its therapeutic efficacy, emphasizing the importance of chiral recognition in
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!