PAX8 and PAX2 are cell-lineage-specific transcription factors that are essential for the development of Wolffian and Müllerian ducts and have recently emerged as specific diagnostic markers for tumors of renal or Müllerian origin. Little is known about their expression in the Wolffian duct-derived human male genital tract. We report our findings of PAX8 and PAX2 expression in the epithelium of the normal male genital tract and in epithelial tumors derived therefrom using immunohistochemistry (IHC). We found that PAX8 and PAX2 were expressed in the epithelium of the male genital tract from the rete testis to the ejaculatory duct. Rare glands in the prostatic central zone, a tissue of purported Wolffian duct origin, were focally positive for PAX2, but no PAX8 was detected in this area, a finding that may warrant further study. We found diffuse expression of PAX8 and PAX2 in 1 case each of serous cystadenoma of the epididymis, carcinoma of the rete testis, Wolffian adnexal tumor of the seminal vesicle, and endometrioid carcinoma of the seminal vesicle. Neither PAX8 nor PAX2 was detected in the seminiferous tubules and interstitium of the normal testis, nor in Leydig cell tumors (n=6), Sertoli cell tumors (n=2), or 48 of 49 germ cell tumors. One pediatric yolk sac tumor showed focal and weak staining for PAX8. Tumors of mesothelial origin, that is, adenomatoid tumors (n=3) and peritoneal malignant mesotheliomas (n=37) in men, were negative for PAX2 and PAX8. Neither PAX2 nor PAX8 was present in other areas of the prostate. Expression of PAX8 and PAX2 in these primary epithelial neoplasms of the male genital tract is due to their histogenetic relationship with Wolffian or Müllerian ducts. PAX8 and PAX2 IHC may facilitate the diagnosis of these tumors and should be included in the differential diagnostic IHC panel.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PAS.0b013e318227e2eeDOI Listing

Publication Analysis

Top Keywords

pax8 pax2
36
male genital
20
genital tract
20
pax8
12
pax2 pax8
12
cell tumors
12
pax2
10
primary epithelial
8
epithelial neoplasms
8
neoplasms male
8

Similar Publications

The histologic differential diagnosis between intracranial hemangioblastoma (HB) and metastatic clear cell renal cell carcinoma may be challenging, especially considering that both tumors exhibit clear cell morphology and can be associated with vHL mutation and/or Von Hippel-Lindau syndrome. As the execution of immunohistochemical analyses is often mandatory, the expression of PAX8 has been traditionally considered a reliable marker of metastatic clear cell renal cell carcinoma, being consistently negative in intracranial HB. However, as in recent years, some cases of PAX8-positive HBs have been reported in the literature; we studied the expression of this antibody on a series of 23 intracranial HB, showing that about 40% of these tumors may express PAX8 and that this immunoreactivity is often focal and weak.

View Article and Find Full Text PDF

Background: Nephrogenic adenoma (NA) is a rare benign tumor that can develop at any site of the urinary system, with the bladder being the most common, followed by the urethra, ureters, renal pelvises, etc. Currently, it is unclear what the pathogenesis of NA is. This study discussed a rare case of malignant transformation from NA to mesonephric adenocarcinoma of the bladder.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. Though the kidney can regenerate after injury, the molecular mechanisms regulating this process remain poorly understood. Pax2 and Pax8 are DNA-binding transcription factors that are upregulated after kidney injury.

View Article and Find Full Text PDF

The MiT/TFE family gene fusion proteins, such as , drive both epithelial (eg, translocation renal cell carcinoma, tRCC) and mesenchymal (eg, perivascular epithelioid cell tumor, PEComa) neoplasms with aggressive behavior. However, no prior mouse models for -related tumors exist and the mechanisms of lineage plasticity induced by this fusion remain unclear. Here, we demonstrate that constitutive murine renal expression of human using Ksp Cadherin-Cre as a driver disrupts kidney development leading to early neonatal renal failure and death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!