Array-based comparative genomic hybridization analysis of genomic DNA was first applied in postnatal diagnosis for patients with intellectual disability (ID) and/or congenital anomalies (CA). Genome-wide single-nucleotide polymorphism (SNP) array analysis was subsequently implemented as the first line diagnostic test for ID/CA patients in our laboratory in 2009, because its diagnostic yield is significantly higher than that of routine cytogenetic analysis. In addition to the detection of copy number variations, the genotype information obtained with SNP array analysis enables the detection of stretches of homozygosity and thereby the possible identification of recessive disease genes, mosaic aneuploidy, or uniparental disomy. Patient-parent (trio) information analysis is used to screen for the presence of any form of uniparental disomy in the patient and can determine the parental origin of a de novo copy number variation. Moreover, the outcome of a genotype analysis is used as a final quality control by ruling out potential sample mismatches due to non-paternity or sample mix-up. SNP array analysis is now also used in our laboratory for patients with disorders for which locus heterogeneity is known (homozygosity pre-screening), in prenatal diagnosis in case of structural ultrasound anomalies, and for patients with leukemia. In this report, we summarize our array findings and experiences in the various diagnostic applications and demonstrate the power of a SNP-based array platform for molecular karyotyping, because it not only significantly improves the diagnostic yield in both constitutional and cancer genome diagnostics, but it also enhances the quality of the diagnostic laboratory workflow.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000331273DOI Listing

Publication Analysis

Top Keywords

snp array
16
array analysis
16
analysis
8
constitutional cancer
8
cancer genome
8
quality control
8
diagnostic yield
8
copy number
8
uniparental disomy
8
array
5

Similar Publications

Objective: To explore the genetic characteristics of a Chinese pedigree with rare mosaic 11q partial duplication and its pathogenetic mechanisms.

Methods: A pedigree which underwent prenatal diagnosis at Wenzhou Central Hospital between September 25, 2015 and November 30, 2023 was selected for the study. Clinical data were collected from the pedigree.

View Article and Find Full Text PDF

Genetic Mapping by 55K Single-Nucleotide Polymorphism Array Reveals Candidate Genes for Tillering Trait in Wheat Mutant .

Genes (Basel)

December 2024

Henan Technology Innovation Centre of Wheat/National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou 450046, China.

Background: The tiller number is a key agronomic trait for increasing the yield potential of wheat ( L.). A number of quantitative trait loci (QTLs) and key genes controlling tillering have been identified, but the regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Heritability and Genome-Wide Association Study of Dog Behavioral Phenotypes in a Commercial Breeding Cohort.

Genes (Basel)

December 2024

Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA.

: Canine behavior plays an important role in the success of the human-dog relationship and the dog's overall welfare, making selection for behavior a vital part of any breeding program. While behaviors are complex traits determined by gene × environment interactions, genetic selection for desirable behavioral phenotypes remains possible. : No genomic association studies of dog behavior to date have been reported on a commercial breeding (CB) cohort; therefore, we utilized dogs from these facilities ( = 615 dogs).

View Article and Find Full Text PDF

Background: Advances in SNP arrays and reference genome assemblies have significantly transformed cattle genomics, particularly for (Zebu cattle). Many commercial SNP arrays were originally designed for , leading to ascertainment bias and the exclusion of crucial SNPs specific to Zebu populations. This review assesses progress in SNP array and reference genome development, with a focus on efforts tailored to Zebu populations and their impact on genomic selection and breeding efficiency.

View Article and Find Full Text PDF

Reconciliation of wheat 660K and 90K SNP arrays and their utilization in dough rheological properties of bread wheat.

J Adv Res

January 2025

Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China. Electronic address:

Introduction: High-density Wheat 660K and 90K SNP arrays are powerful tools for understanding the genetic basis of wheat traits. However, their inconsistantly physical positions that were caused by different versions of Chinese Spring genome during developing arrays are confused and inconvenient for further application.

Objective: With the repid development of wheat geonome sequencing, we aim to reconciliate Wheat 660K and 90K SNP arrays in modern cultivar and reveal the genetic basis of dough rheological properties in bread wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!