Objective: In the development of diabetic retinopathy, mitochondrial dysfunction is considered to play an important role in the apoptosis of retinal capillary cells. Diabetes activates matrix metalloproteinase-9 (MMP-9) in the retina and its capillary cells, and activated MMP-9 becomes proapoptotic. The objective of this study is to elucidate the plausible mechanism by which active MMP-9 contributes to the mitochondrial dysfunction in the retina.

Research Design And Methods: Using MMP-9 gene knockout (MMP-KO) mice, we investigated the effect of MMP-9 regulation on diabetes-induced increased retinal capillary cell apoptosis, development of retinopathy, mitochondrial dysfunction and ultrastructure, and mitochondrial DNA (mtDNA) damage. To understand how diabetes increases mitochondrial accumulation of MMP-9, interactions between MMP-9 and chaperone proteins (heat shock protein [Hsp] 70 and Hsp60) were evaluated. The results were confirmed in the retinal mitochondria from human donors with diabetic retinopathy, and in isolated retinal endothelial cells transfected with MMP-9 small interfering RNA (siRNA).

Results: Retinal microvasculature of MMP-KO mice, diabetic for ∼7 months, did not show increased apoptosis and pathology characteristic of retinopathy. In the same MMP-KO diabetic mice, activation of MMP-9 and dysfunction of the mitochondria were prevented, and electron microscopy of the retinal microvasculature region revealed normal mitochondrial matrix and packed lamellar cristae. Damage to mtDNA was protected, and the binding of MMP-9 with Hsp70 or Hsp60 was also normal. As in the retina from wild-type diabetic mice, activation of mitochondrial MMP-9 and alterations in the binding of MMP-9 with chaperone proteins were also observed in the retina from donors with diabetic retinopathy. In endothelial cells transfected with MMP-9 siRNA, high glucose-induced damage to the mitochondria and the chaperone machinery was ameliorated.

Conclusions: Regulation of activated MMP-9 prevents retinal capillary cells from undergoing apoptosis by protecting mitochondrial ultrastructure and function and preventing mtDNA damage. Thus, MMP-9 inhibitors could have potential therapeutic value in preventing the development of diabetic retinopathy by preventing the continuation of the vicious cycle of mitochondrial damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198054PMC
http://dx.doi.org/10.2337/db11-0816DOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
16
mmp-9
15
diabetic mice
12
mitochondrial dysfunction
12
retinal capillary
12
capillary cells
12
mitochondrial
10
mmp-9 gene
8
development retinopathy
8
diabetic
8

Similar Publications

Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.

View Article and Find Full Text PDF

Wide field retinal imaging has emerged as a transformative technology over the last few decades, revolutionizing our ability to visualize the intricate landscape of the retina. By capturing expansive retinal areas, these techniques offer a panoramic view going beyond traditional imaging methods. In this review, we explore the significance of retinal imaging-based biomarkers to help diagnose ocular and systemic conditions.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate serum cystatin C as a potential biomarker for diabetic retinopathy (DR) in a rural Indian population, addressing the urgent need for effective screening tools amidst rising diabetes prevalence.

Materials And Methods: A cross-sectional study recruited 112 patients with diabetes mellitus from Sambalpur, Odisha, India, categorized into groups with and without DR. Serum cystatin C levels were measured alongside clinical and demographic parameters, using established diagnostic methods.

View Article and Find Full Text PDF

Vitrectomy for diabetic retinopathy: A review of indications, techniques, outcomes, and complications.

Taiwan J Ophthalmol

January 2024

Smt. Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India.

Diabetic retinopathy is one of the most severe forms of retinopathy and a leading cause of blindness all over the world. Of a greater concern is proliferative diabetic retinopathy which leads to vitreous haemorrhage and tractional retinal detachment in such cases. A majority of these cases require a surgical intervention to improve vision and prevent further vision loss.

View Article and Find Full Text PDF

Glaucoma, a severe eye disease leading to irreversible vision loss if untreated, remains a significant challenge in healthcare due to the complexity of its detection. Traditional methods rely on clinical examinations of fundus images, assessing features like optic cup and disc sizes, rim thickness, and other ocular deformities. Recent advancements in artificial intelligence have introduced new opportunities for enhancing glaucoma detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!