We report on initial results of using a new direct detection device (DDD) for single particle reconstruction of vitreous ice embedded specimens. Images were acquired on a Tecnai F20 at 200keV and a nominal magnification of 29,000×. This camera has a significantly improved signal to noise ratio and modulation transfer function (MTF) at 200keV compared to a standard CCD camera installed on the same microscope. Control of the DDD has been integrated into Leginon, an automated data collection system. Using GroEL as a test specimen, we obtained images of ∼30K particles with the CCD and the DDD from the same specimen sample using essentially identical imaging conditions. Comparison of the maps reconstructed from the CCD images and the DDD images demonstrates the improved performance of the DDD. We also obtained a 3D reconstruction from ∼70K GroEL particles acquired using the DDD; the quality of the density map demonstrates the potential of this new recording device for cryoEM data acquisition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210420PMC
http://dx.doi.org/10.1016/j.jsb.2011.09.002DOI Listing

Publication Analysis

Top Keywords

direct detection
8
detection device
8
single particle
8
ddd
6
initial evaluation
4
evaluation direct
4
device detector
4
detector single
4
particle cryo-electron
4
cryo-electron microscopy
4

Similar Publications

Postural stability measures as diagnostic tools for chronic ankle instability: a comprehensive assessment.

BMC Sports Sci Med Rehabil

January 2025

Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Science, Enghelab St, Pich-e-Shemiran, Tehran, Iran.

Background: Chronic ankle instability (CAI) is characterized by recurrent sprains and persistent symptoms, which impair postural control. This study evaluates the diagnostic utility of various linear and nonlinear postural stability measures in distinguishing individuals with CAI from healthy controls.

Methods: Postural stability was assessed in 24 participants (12 with CAI and 12 healthy controls) using a force platform under four conditions: hard surface with eyes open, hard surface with eyes closed, soft surface with eyes open, and soft surface with eyes closed.

View Article and Find Full Text PDF

Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy.

View Article and Find Full Text PDF

Microgrid systems have evolved based on renewable energies including wind, solar, and hydrogen to make the satisfaction of loads far from the main grid more flexible and controllable using both island- and grid-connected modes. Albeit microgrids can gain beneficial results in cost and energy schedules once operating in grid-connected mode, such systems are vulnerable to malicious attacks from the viewpoint of cybersecurity. With this in mind, this paper explores a novel advanced attack model named the false transferred data injection (FTDI) attack aiming to manipulatively alter the power flowing from the microgrid to the upstream grid to raise voltage usability probability.

View Article and Find Full Text PDF

With the rapid development of Internet of Things (IoT) technology, embedded devices in various computer vision scenarios can realize real-time target detection and recognition tasks, such as intelligent manufacturing, automatic driving, smart home, and so on. YOLOv8, as an advanced deep learning model in the field of target detection, has attracted much attention for its excellent detection speed, high precision, and multi-task processing capability. However, since IoT embedded devices typically own limited computing resources, direct deployment of YOLOv8 is a big challenge, especially for real-time detection tasks.

View Article and Find Full Text PDF

Multiplexing Label-Free Polymeric Nanocarriers via Antipolymer Antibodies.

ACS Sens

January 2025

Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia.

Recent examples of immune responses directed against the synthetic polymer poly(ethylene glycol) (PEG) have led to the development of biocompatible polymers, which are viewed as promising candidates to act as surrogate materials for use in biological applications, such as hydrophilic poly(2-oxazoline)s (POx). Despite this, the characterization of critical aspects of the immune response against these emerging materials is sparse, in part because no known monoclonal antibodies (mAbs) against this family of synthetic material have been reported. To advance the understanding of such responses, we report the successful isolation and characterization of hybridoma-derived mAbs with excellent specificity for different POx species and notable selectivity for highly branched polymer architectures over linear systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!