Using molecular dynamic simulations, we study three families of continuous core-softened potentials consisting of two length scales: a shoulder scale and an attractive scale. All the families have the same slope between the two length scales but exhibit different potential energy gap between them. For each family three shoulder depths are analyzed. We show that all these systems exhibit a liquid-liquid phase transition between a high density liquid phase and a low density liquid phase ending at a critical point. The critical temperature is the same for all cases suggesting that the critical temperature is only dependent on the slope between the two scales. The critical pressure decreases with the decrease of the potential energy gap between the two scales suggesting that the pressure is responsible for forming the high density liquid. We also show, using the radial distribution function and the excess entropy analysis, that the density, the diffusion, and the structural anomalies are present if particles move from the attractive scale to the shoulder scale with the increase of the temperature indicating that the anomalous behavior depends only in what happens up to the second coordination shell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3630941 | DOI Listing |
Sci Rep
December 2024
College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian, 116650, Liaoning, China.
The novel coronavirus (COVID-19) has affected more than two million people of the world, and far social distancing and segregated lifestyle have to be adopted as a common solution in recent years. To solve the problem of sanitation control and epidemic prevention in public places, in this paper, an intelligent disinfection control system based on the STM32 single-chip microprocessor was designed to realize intelligent closed-loop disinfection in local public places such as public toilets. The proposed system comprises seven modules: image acquisition, spraying control, disinfectant liquid level control, access control, voice broadcast, system display, and data storage.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Republic of Korea.
Self-assembled configurations are versatile for applications in which liquid-mediated phenomena are employed to ensure that static or mild physical interactions between assembling blocks take advantage of local energy minima. For granular materials, however, a particle's momentum in air leads to random collisions and the formation of disordered phases, eventually producing jammed configurations when densely packed. Therefore, unlike fluidic self-assembly, the self-assembly of dry particles typically lacks programmability based on density and ordering symmetry and has thus been limited in applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Industrial Ecology and Environment Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
Photocatalytic conversion of carbon dioxide (CO) to fuel provides an ideal pathway to achieving carbon neutrality. One significant hindrance in achieving the reduction of CO to higher energy density multicarbon products (C) was the difficulty in coupling C-C bonds efficiently. Copper (Cu) is considered the most suitable metal catalyst for C-C coupling to form C products in the CO reduction reaction (CORR), but it encounters challenges such as low product selectivity and slow catalytic efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
Faculté des Sciences et Technologies, LEMTA - Université de Lorraine - CNRS UMR 7563, Boîte Postale 70239, Vandoeuvre les Nancy cedex, 54506, France.
The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!