Structures of trimetallic molybdenum and tungsten suboxide cluster anions.

J Chem Phys

Indiana University, Department of Chemistry, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA.

Published: September 2011

Anion photoelectron spectra of Mo(3)O(y)(-) and W(3)O(y)(-) (y = 3-6) are reported and analyzed using density functional theory results in an attempt to determine whether electronic and structural trends in the less oxidized clusters (y = 3, 4) could elucidate the disparate chemical properties of the M(3)O(y)(-) (M = Mo, W, y = 5, 6) species. In general, cyclic structures are calculated to be more stable by at least 1 eV than extended structures, and the lowest energy structures calculated for the most reduced species favor M = O terminal bonds. While the numerous low-energy structures found for Mo(3)O(y)(-)/Mo(3)O(y) and W(3)O(y)(-)/W(3)O(y) were, in general, similar, various structures of W(3)O(y)(-)/W(3)O(y) were found to be energetically closer lying than analogous structures of Mo(3)O(y)(-)/Mo(3)O(y). Additionally, the Mo-O-Mo bridge bond was found to be a more stabilizing structural motif than the W-O-W bridge bond, with the oxygen center in the former having the highest negative charge. Based on this, the observation of trapped intermediates in reactions between Mo(3)O(y)(-) and water or CO(2) that are not observed in analogous W(3)O(y)(-) reactivity studies may be partially attributed to the role of bridge bond fluxionality.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3635408DOI Listing

Publication Analysis

Top Keywords

bridge bond
12
structures calculated
8
structures mo3oy-/mo3oy
8
structures
7
structures trimetallic
4
trimetallic molybdenum
4
molybdenum tungsten
4
tungsten suboxide
4
suboxide cluster
4
cluster anions
4

Similar Publications

Water-Mediated Proton Hopping Mechanisms at the SnO(110)/HO Interface from Ab Initio Deep Potential Molecular Dynamics.

Precis Chem

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.

View Article and Find Full Text PDF

Characterization and bioinformatic analysis of a new chimeric endolysin against MRSA with great stability.

AMB Express

December 2024

Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

Antibiotics become less effective in treating infectious diseases as resistance increases. Staphylococcus aureus is a global problem due to its ability to form biofilms and resistance mechanisms. Phage endolysin is one of the most promising methods for combating antibiotic resistance.

View Article and Find Full Text PDF

Oxygen vacancies in Ruddlesden-Popper (RP) perovskites (PV) [AO][ABO] play a pivotal role in engineering functional properties and thus understanding the relationship between oxygen-vacancy distribution and physical properties can open up new strategies for fine manipulation of structure-driven functionalities. However, the structural origin of preferential distribution for oxygen vacancies in RP structures is not well understood, notably in the single-layer ( = 1) RP-structure. Herein, the = 1 RP phase SrNdZnO was rationally designed and structurally characterized by combining three-dimensional (3D) electron diffraction and neutron powder diffraction.

View Article and Find Full Text PDF

Evaluation of the shear bond strength of surface-treated Cobalt-Chromium metal crowns on corticobasal® implant abutments cemented using different luting agents.

J Stomatol Oral Maxillofac Surg

December 2024

Reader, Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.. Electronic address:

Purpose: This in-vitro study aimed to compare the shear bond strength (SBS) of cobalt-chromium (Co-Cr) crowns on Corticobasal® implant abutments, evaluating the effects of two surface treatments and two luting agents.

Materials And Methods: Thirty Co-Cr crowns were fabricated using CAD-CAM technology with a direct metal laser sintering process and divided into three groups based on surface treatment: Group I (untreated), Group II (sandblasted with 50 μm Al₂O₃), and Group III (Er: YAG laser etching). Each group was further subdivided based on luting cement: Sub group A (GC Fuji Plus) and Sub group B (Rely X U200).

View Article and Find Full Text PDF

The functional units of natural photosynthetic systems control the process of converting sunlight into chemical energy. In this article, we explore a series of chemically and structurally modified bacteriochlorophyll and chlorophyll pigments through computational chemistry to evaluate their electronic spectroscopy properties. More specifically, we use multiconfigurational and time-dependent density functional theory methods, along with molecular dynamics simulations, to compute the models' energetics both in an implicit and explicit solvent environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!