We present accurate quantum calculations of state-to-state cross sections for the N + OH → NO + H reaction performed on the ground (3)A'' global adiabatic potential energy surface of Guadagnini et al. [J. Chem. Phys. 102, 774 (1995)]. The OH reagent is initially considered in the rovibrational state ν = 0, j = 0 and wave packet calculations have been performed for selected total angular momentum, J = 0, 10, 20, 30, 40,...,120. Converged integral state-to-state cross sections are obtained up to a collision energy of 0.5 eV, considering a maximum number of eight helicity components, Ω = 0,...,7. Reaction probabilities for J = 0 obtained as a function of collision energy, using the wave packet method, are compared with the recently published time-independent quantum mechanical one. Total reaction cross sections, state-specific rate constants, opacity functions, and product state-resolved integral cross-sections have been obtained by means of the wave packet method for several collision energies and compared with recent quasi-classical trajectory results obtained with the same potential energy surface. The rate constant for OH(ν = 0, j = 0) is in good agreement with the previous theoretical values, but in disagreement with the experimental data, except at 300 K.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3633240DOI Listing

Publication Analysis

Top Keywords

wave packet
16
cross sections
12
packet calculations
8
state-to-state cross
8
potential energy
8
energy surface
8
collision energy
8
packet method
8
accurate time
4
time dependent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!