Global ab initio potential energy surfaces for both the ground (X̃1A') and excited (Ã1A'') electronic states of HNO and vibrational states of the Renner-Teller Ã1A''-X̃1A' system.

J Chem Phys

Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Published: September 2011

The global potential energy surfaces for both the ground (X̃(1)A(')) and excited (Ã(1)A('')) electronic states of the HNO molecule have been constructed by three-dimensional cubic spline interpolation of more than 17,000 ab initio points, which have been calculated at the internal contracted multi-reference configuration interaction level with the Davidson correction using an augmented correlation-consistent polarized valence quadruple zeta basis set. The low-lying vibrational energy levels for the two electronic states of HNO have also been calculated on our potential energy surfaces including the diagonal Renner-Teller terms. The calculated results have shown a good agreement with the experimental vibrational frequencies of HNO and its isotopomers.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3632994DOI Listing

Publication Analysis

Top Keywords

potential energy
12
energy surfaces
12
electronic states
12
states hno
12
surfaces ground
8
ground x̃1a'
8
x̃1a' excited
8
excited Ã1a''
8
Ã1a'' electronic
8
global initio
4

Similar Publications

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Non-viral vectors have gained recognition for their ability to enhance the safety of gene delivery processes. Among these, polyethyleneimine (PEI) stands out as the most widely utilized cationic polymer due to its accessibility. Traditional methods of modifying PEI, such as ligand conjugation, chemical derivatization, and cross-linking, are associated with intricate preparation procedures, limited transfection efficiency, and suboptimal biocompatibility.

View Article and Find Full Text PDF

This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Background: Rapid socio-economic developments confront China with a rising consumption of ultra-processed foods (UPFs) and ultra-processed drinks (UPDs). This study aims to evaluate their potential impact on diet transformation towards sustainability including nutrition, environmental sustainability, and diet-related cost.

Methods: Dietary intake was assessed by 24 h recalls in 27,311 participants (age: 40.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!