A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of polymer brush architecture on antibiofouling properties. | LitMetric

Effect of polymer brush architecture on antibiofouling properties.

Biomacromolecules

Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB21EW, UK.

Published: November 2011

Polymer brushes show great promise in next-generation antibiofouling surfaces. Here, we have studied the influence of polymer brush architecture on protein resistance. By carefully optimizing reaction conditions, we were able to polymerize oligoglycerol-based brushes with sterically demanding linear or dendronized side chains on gold surfaces. Protein adsorption from serum and plasma was analyzed by surface plasmon resonance. Our findings reveal a pronounced dependence of biofouling on brush architecture. Bulky yet flexible side chains as in dendronized brushes provide an ideal environment to repel protein-possibly through formation of a hydration layer, which can be further enhanced by presenting free hydroxyl groups on the polymer brushes. A deeper understanding of how brush architecture influences protein resistance will ultimately enable fabrication of surface coatings tailored to specific requirements in biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm200943mDOI Listing

Publication Analysis

Top Keywords

brush architecture
16
polymer brush
8
polymer brushes
8
protein resistance
8
side chains
8
polymer
4
architecture
4
architecture antibiofouling
4
antibiofouling properties
4
properties polymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!