The effect of addition of ionic liquids (ILs) on the aggregation behavior of a cyanine dye, 5,5',6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazolocarbocyanine (TDBC), was investigated. In basic aqueous buffer solutions (pH ≥ 10), TDBC preferably exists in its J-aggregated form. Addition of hydrophilic ILs > 5 wt % is observed to disrupt the TDBC J-aggregates, converting them to monomer form most likely because of the interaction between bulky IL cation and the J-aggregates in a time-dependent fashion. This is evidenced by the observed increase in monomer band absorbance at the expense of the absorbance band due to J-aggregates over time. Inorganic salts at similar molar concentrations do not cause this phenomenon but instead induce TDBC precipitation. At low concentrations (<5 wt %), the added IL acts similarly to the inorganic salts, reducing the overall absorbance of TDBC in the solution most likely due to cation exchange causing TDBC precipitation. Addition of a molecular solvent, ethanol, at 15 wt % results in an initial increase in monomer absorbance, albeit to a much lesser extent than for the corresponding molar fraction of IL, which then decreases over time with recovery of J-aggregate absorbance--quite opposite the time-dependent behavior seen for TDBC in PB at pH 12.0 with >5 wt % IL. The unique and dual behavior of ILs as an additive toward affecting cyanine dye aggregation is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la203317tDOI Listing

Publication Analysis

Top Keywords

cyanine dye
12
ionic liquids
8
contrasting behavior
4
behavior classical
4
classical salts
4
salts versus
4
versus ionic
4
liquids aqueous
4
aqueous phase
4
phase j-aggregate
4

Similar Publications

Modulation of singlet and triplet energy transfer from excited semiconductor nanocrystals to attached dye molecules remains an important criterion for the design of light-harvesting assemblies. Whereas one can consider the selection of donor and acceptor with favorable energetics, spectral overlap, and kinetics of energy transfer as a means to direct the singlet and triplet energy transfer pathways, it is not obvious how to control the singlet and triplet characteristics of the donor semiconductor nanocrystal itself. By doping CsPb(ClBr) nanocrystals with Mn, we have now succeeded in increasing the triplet characteristics of semiconductor nanocrystals.

View Article and Find Full Text PDF

Polyfluorene-Enhanced Near-Infrared Electrochemiluminescence of Heptamethine Cyanine Dye for Coreactants-Free Bioanalysis.

Anal Chem

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The near-infrared electrochemiluminescence (NIR-ECL) technique has received special attention in cell imaging and biomedical analysis due to its deep tissue penetration, low background interference, and high sensitivity. Although cyanine-based dyes are promising NIR-ECL luminophores, limited ECL efficiency and the need for exogenous coreactants have prevented their widespread application. In this work, poly[9,9-bis(3'-(-dimethylamino)propyl)-2,7-fluorene]--2,7-(9,9-dioctylfluorene)] (PFN) was innovatively developed to significantly invigorate the NIR-ECL performance of heptamethine cyanine dye IR 783 by the resonance energy transfer (RET) strategy.

View Article and Find Full Text PDF

Cyanine dye-embedded fluorescent film for ratiometric pH measurement.

Photochem Photobiol Sci

January 2025

CNRS, Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, 91405, Orsay, France.

The precise monitoring of pH is critical in various applications, particularly in biology-related areas. In this work, we report the synthesis and characterization of a novel cyanine-based fluorescent pH sensor with a pK around 6. This pH-sensitive dye features a cyanine chromophore coupled to a piperazine moiety, which modulates the protonation equilibrium and thus the optical response.

View Article and Find Full Text PDF

Less Is More: Donor Engineering of a Stable Molecular Dye for Bioimaging in the NIR-IIb Window.

J Med Chem

January 2025

Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.

Fluorescence molecular imaging aims to enhance clarity in the region of interest, particularly in the near-infrared IIb window (NIR-IIb, 1500-1700 nm). To achieve this, we developed a novel small-molecule dye, named , based on classic cyanine dyes (heptamethine or pentamethine is essential for wavelengths beyond 1000 nm). By reducing excessive polymethine to a single methine and disrupting symmetry to form an asymmetric donor-π-acceptor (D-π-A) architecture, we enhanced the donor's electron-donating capability, yielding emission at 1088 nm.

View Article and Find Full Text PDF

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!