The International Protein Index (IPI) database has been one of the most widely used protein databases in MS proteomics approaches. Recently, the closure of IPI in September 2011 was announced. Its recommended replacement is the new UniProt Knowledgebase (UniProtKB) "complete proteome" sets, launched in May 2011. Here, we analyze the consequences of IPI's discontinuation for human and mouse data, and the effect of its substitution with UniProtKB on two levels: (i) data already produced and (ii) newly performed experiments. To estimate the effect on existing data, we investigated how well IPI identifiers map to UniProtKB accessions. We found that 21% of human and 10% of mouse identifiers do not map to UniProtKB and would thus be "lost." To investigate the impact on new experiments, we compared the theoretical search space (i.e. the tryptic peptides) of both resources and found that it is decreased by 14.0% for human and 8.9% for mouse data through IPI's closure. An analysis on the experimental evidence for these "lost" peptides showed that the vast majority has not been identified in experiments available in the major proteomics repositories. It thus seems likely that the search space provided by UniProtKB is of higher quality than the one currently provided by IPI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556690PMC
http://dx.doi.org/10.1002/pmic.201100363DOI Listing

Publication Analysis

Top Keywords

international protein
8
protein ipi
8
ipi database
8
substitution uniprotkb
8
uniprotkb "complete
8
"complete proteome"
8
proteome" sets
8
mouse data
8
identifiers map
8
map uniprotkb
8

Similar Publications

Blocking ANGPTL3 and CD47 impact on atherosclerosis-correspondence.

Pharmacol Res

January 2025

Department of Pediatrics, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan. Electronic address:

View Article and Find Full Text PDF

The Role of the LINC Complex in Ageing and Microgravity.

Mech Ageing Dev

January 2025

Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, the Netherlands; TEC-MMG-LIS Lab, European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands.

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex plays a crucial role in connecting the nuclear envelope to the cytoskeleton, providing structural support to the nucleus and facilitating mechanical signaling between the extracellular environment and the nucleus. Research in mechanobiology onboard the International Space Station (ISS) and in simulated microgravity (SMG) highlight the importance of gravity in functional mechanotransduction. Although the altered gravity research regarding mechanobiology has been greatly focused on the cytoskeleton and the extracellular matrix (ECM), recent research demonstrates that SMG also induces changes in nuclear mechanics and gene expression patterns, which have been shown to be LINC complex dependent.

View Article and Find Full Text PDF

Energy availability and macronutrient intake over a 7-day training period in adolescent rugby players.

J Sports Med Phys Fitness

January 2025

Research Unit on Youth, Physical Activity, Sports and Health (J-AP2S), University of Toulon, Toulon, France.

Background: Understanding the dietary intake of elite adolescent athletes and its adequacy with sport nutrition recommendation is a key issue for health and player development, as well as performance and recovery. Energy availability needs to be considered to ensure optimal health and performance in young athletes. The present study aimed to quantify energy availability, energy expenditure and macronutrient intake in young male rugby union players competing at national level.

View Article and Find Full Text PDF

BI 1703880, a novel STimulator of INterferon Genes (STING) agonist, has demonstrated preclinical antitumor activity. As STING activation can upregulate programmed death ligand 1 and human leukocyte antigen in tumor cells, a combination of BI 1703880 and an anti-programmed cell death protein 1-antibody, such as ezabenlimab, may improve efficacy. This first-in-human phase Ia study (NCT05471856) is evaluating BI 1703880 plus ezabenlimab in patients with advanced solid tumors.

View Article and Find Full Text PDF

The evolution of the Amber additive protein force field: History, current status, and future.

J Chem Phys

January 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!