Unlabelled: Autophagy can selectively remove damaged organelles, including mitochondria, and, in turn, protect against mitochondria-damage-induced cell death. Acetaminophen (APAP) overdose can cause liver injury in animals and humans by inducing mitochondria damage and subsequent necrosis in hepatocytes. Although many detrimental mechanisms have been reported to be responsible for APAP-induced hepatotoxicity, it is not known whether APAP can modulate autophagy to regulate hepatotoxicity in hepatocytes. To test the hypothesis that autophagy may play a critical protective role against APAP-induced hepatotoxicity, primary cultured mouse hepatocytes and green fluorescent protein/light chain 3 transgenic mice were treated with APAP. By using a series of morphological and biochemical autophagic flux assays, we found that APAP induced autophagy both in the in vivo mouse liver and in primary cultured hepatocytes. We also found that APAP treatment might suppress mammalian target of rapamycin in hepatocytes and that APAP-induced autophagy was suppressed by N-acetylcysteine, suggesting APAP mitochondrial protein binding and the subsequent production of reactive oxygen species may play an important role in APAP-induced autophagy. Pharmacological inhibition of autophagy by 3-methyladenine or chloroquine further exacerbated APAP-induced hepatotoxicity. In contrast, induction of autophagy by rapamycin inhibited APAP-induced hepatotoxicity.
Conclusion: APAP overdose induces autophagy, which attenuates APAP-induced liver cell death by removing damaged mitochondria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245329 | PMC |
http://dx.doi.org/10.1002/hep.24690 | DOI Listing |
J Pharm Pharmacol
January 2025
Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland.
Background: Methylcinnamate (MC), a safe flavoring agent naturally found in Occimum basilicum L. is reported to have an anti-inflammatory responses in various disease models. Acetaminophen (APAP) toxicity is a significant contributor to acute liver injury, which leads to oxidative stress and inflammation.
View Article and Find Full Text PDFArch Toxicol
January 2025
Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
Given the lack of accurate diagnostic methods of acetaminophen (APAP)-induced acute liver failure (ALF), the search for new biomarkers for its diagnosis is an urgent need. The aim of this study was to evaluate the role of bone morphogenetic protein 6 (BMP6) in APAP-induced ALF progression and its potential value as a biomarker of ALF. Hepatic and circulating BMP6 expression was assessed in APAP-treated mice and in serum samples from patients with APAP overdose.
View Article and Find Full Text PDFTheranostics
January 2025
Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).
View Article and Find Full Text PDFToxics
November 2024
Laboratory of Metabolic Biochemistry, Institute of Exact and Biological Sciences, UFOP, Ouro Preto 35402-136, MG, Brazil.
Paracetamol (APAP) overdose is the leading cause of drug-induced liver injury, leading to acute liver failure. However, the role of concurrent acute or chronic ethanol ingestion in this context requires further clarification. In this study, we investigated the effects of acute and chronic ethanol ingestion on APAP-induced hepatotoxicity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt.
Unlabelled: Despite the fact that canagliflozin (Cana), a sodium-glucose cotransporter 2 inhibitor, is an anti-diabetic medication with additional effects on the kidney, there is limited experimental data to deliberate its hepato-reno-protective potentiality. Acetaminophen (APAP) overdose remains one of the prominent contributors to hepato-renal damage.
Aim: Our study assessed the novel effect of Cana against APAP-induced toxicities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!