Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel biocompatible chitosan passivated manganese doped zinc sulfide (Mn doped ZnS) nanophosphor has been synthesized through a simple aqueous precipitation reaction. Upon excitation with ultraviolet light, the quantum dots (QDs) emit an orange luminescence peaking at 590 nm, which is visible to the naked eye. These chitosan coated Mn doped ZnS QDs can have potential applications in bio-labeling, particularly in fluorescence-based imaging. One of the envisioned applications of these QDs is in improving the conventional, organic dye-reliant Fluorescence in situ Hybridization (FISH) technique, a widely used method for microbial detection. Here we demonstrate that the chitosan-capped Mn doped ZnS QDs are suitable for this purpose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-011-0973-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!