Blastocystis, one of the most common parasites colonizing the human intestine, is an extracellular, noninvasive, luminal protozoan with controversial pathogenesis. Blastocystis infections can be asymptomatic or cause intestinal symptoms of vomiting, diarrhea, and abdominal pain. Although chronic infections are frequently reported, Blastocystis infections have also been reported to be self-limiting in immunocompetent patients. Characterizing the host innate response to Blastocystis would lead to a better understanding of the parasite's pathogenesis. Intestinal epithelial cells produce nitric oxide (NO), primarily on the apical side, in order to target luminal pathogens. In this study, we show that NO production by intestinal cells may be a host defense mechanism against Blastocystis. Two clinically relevant isolates of Blastocystis, ST-7 (B) and ST-4 (WR-1), were found to be susceptible to a range of NO donors. ST-7 (B), a metronidazole-resistant isolate, was found to be more sensitive to nitrosative stress. Using the Caco-2 model of human intestinal epithelium, Blastocystis ST-7 (B) but not ST-4 (WR-1) exhibited dose-dependent inhibition of Caco-2 NO production, and this was associated with downregulation of inducible nitric oxide synthase (iNOS). Despite its higher susceptibility to NO, Blastocystis ST-7 (B) may have evolved unique strategies to evade this potential host defense by depressing host NO production. This is the first study to highlight a strain-to-strain variation in the ability of Blastocystis to evade the host antiparasitic NO response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232666 | PMC |
http://dx.doi.org/10.1128/IAI.05632-11 | DOI Listing |
JA Clin Rep
January 2025
Department of Anesthesiology and Critical Care Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan.
Background: Plasma exchange (PE) removes high-molecular-weight substances and is sometimes used for antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with alveolar hemorrhage. Hypotension during PE is rare, except in allergic cases. We report a case of shock likely caused by increased pulmonary vascular resistance (PVR) during PE.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Physiology, College of Medicine, King Saud University, 12271, Riyadh, Saudi Arabia.
Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Acupuncture and Tuina College, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.
Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!