The aim of the paper is to assess nitric oxide (NO) production during aerobic training and its role on the progression of diabetic nephropathy in rats. Induction of diabetes mellitus (DM) was achieved in adult male Wistar rats with streptozotocin. Half of the animals underwent training on a treadmill and the others (sedentary) stayed on a turned-off treadmill for the same period according to the following groups: sedentary control (CTL + SE); training control (CTL + EX); sedentary diabetic (DM + SE); and training diabetic (DM + EX) (n = 9 for all groups). The training on treadmill was carried out at a work rate of 16 m/min, 60 min/d, 5 d/week for eight weeks. Before and after the exercises, rats were placed in individual metabolic cages with standard chow and water ad libitum, for 24-h urine collection, followed by three hours' fasting blood sample withdrawal from the retro-orbital plexus, under anesthesia. Diabetic animals showed reduction of body weight, creatinine and urea depurations and NO excretion, increased blood glucose concentrations, albuminuria and thiobarbituric acid reactive substance (TBARS) excretion, when compared with the respective controls. All these alterations induced by DM were attenuated in the DM + EX versus DM + SE group. Analysis of insulin concentrations at the end of the protocol showed no significant change between the DM + SE and DM + EX groups. In conclusion, our data show that a routine physical exercise resulted in a better control of glycemia with an increased NO bioavailability and oxidative stress control, associated with an amelioration of renal function. We suggest aerobic training and the control of oxidative and nitrosative stress as useful non-pharmacological tools to delay the progression of diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1258/ebm.2011.011005 | DOI Listing |
J Tissue Viability
January 2025
College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China. Electronic address:
Background: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and a leading cause of end-stage renal disease worldwide. Understanding trends in experimental research on DN is crucial for advancing knowledge and clinical management.
Objective: This study aimed to explore current trends in DN related experimental research, utilizing CiteSpace, VOSviewer, and Bibliometrix to identify key contributors, influential countries, and noteworthy topics.
J Res Med Sci
November 2024
Water and Electrolytes Research Center, and Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.
PLoS One
January 2025
Department of Nephrology, Pu'er People's Hospital, Pu'er, Yunnan, China.
Diabetic nephropathy (DN) is the single largest cause of end-stage renal disease (ESRD). Inflammation reaction mediated by NLRP3 inflammasome and Nrf2-related oxidative stress have been considered to play a very important role in the progress of diabetic nephropathy (DN). Effective drugs for the treatment of diabetic nephropathy still need to be explored.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Kempegowda Institute of Medical Sciences, Bengaluru, IND.
Background Type 2 diabetes mellitus (T2DM) is associated with a high risk of developing microvascular complications such as diabetic nephropathy, diabetic neuropathy (DN), and diabetic retinopathy (DR), leading to significant morbidity. Early detection of these complications is crucial for improving patient outcomes. Neutrophil-lymphocyte ratio (NLR) and urine albumin-creatinine ratio (UACR) show promise as cost-effective and accessible biomarkers for the early detection of microvascular complications in T2DM.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
Long noncoding RNAs may function as competitive endogenous RNAs by sponging microRNAs, thereby contributing to the progression of diabetic nephropathy. In this study, a potential diabetic nephropathy-related long noncoding-microRNA-mRNA axis, Gm4419-miR-455-3p-, was predicted using bioinformatics methods. To verify the role of the Gm4419-miR-455-3p- axis in diabetic nephropathy, an high glucose-induced mesangial cell model was established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!