It is now recognized that the International System of Units (SI units) will be redefined in terms of fundamental constants, even if the date when this will occur is still under debate. Actually, the best estimate of fundamental constant values is given by a least-squares adjustment, carried out under the auspices of the Committee on Data for Science and Technology (CODATA) Task Group on Fundamental Constants. This adjustment provides a significant measure of the correctness and overall consistency of the basic theories and experimental methods of physics using the values of the constants obtained from widely differing experiments. The physical theories that underlie this adjustment are assumed to be valid, such as quantum electrodynamics (QED). Testing QED, one of the most precise theories is the aim of many accurate experiments. The calculations and the corresponding experiments can be carried out either on a boundless system, such as the electron magnetic moment anomaly, or on a bound system, such as atomic hydrogen. The value of fundamental constants can be deduced from the comparison of theory and experiment. For example, using QED calculations, the value of the fine structure constant given by the CODATA is mainly inferred from the measurement of the electron magnetic moment anomaly carried out by Gabrielse's group. (Hanneke et al. 2008 Phys. Rev. Lett. 100, 120801) The value of the Rydberg constant is known from two-photon spectroscopy of hydrogen combined with accurate theoretical quantities. The Rydberg constant, determined by the comparison of theory and experiment using atomic hydrogen, is known with a relative uncertainty of 6.6×10(-12). It is one of the most accurate fundamental constants to date. A careful analysis shows that knowledge of the electrical size of the proton is nowadays a limitation in this comparison. The aim of muonic hydrogen spectroscopy was to obtain an accurate value of the proton charge radius. However, the value deduced from this experiment contradicts other less accurate determinations. This problem is known as the proton radius puzzle. This new determination of the proton radius may affect the value of the Rydberg constant . This constant is related to many fundamental constants; in particular, links the two possible ways proposed for the redefinition of the kilogram, the Avogadro constant N(A) and the Planck constant h. However, the current relative uncertainty on the experimental determinations of N(A) or h is three orders of magnitude larger than the 'possible' shift of the Rydberg constant, which may be shown by the new value of the size of the proton radius determined from muonic hydrogen. The proton radius puzzle will not interfere in the redefinition of the kilogram. After a short introduction to the properties of the proton, we will describe the muonic hydrogen experiment. There is intense theoretical activity as a result of our observation. A brief summary of possible theoretical explanations at the date of writing of the paper will be given. The contribution of the proton radius puzzle to the redefinition of SI-based units will then be examined.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2011.0233DOI Listing

Publication Analysis

Top Keywords

proton radius
24
fundamental constants
20
rydberg constant
16
muonic hydrogen
12
radius puzzle
12
proton
9
constant
9
international system
8
units will
8
electron magnetic
8

Similar Publications

Manganese oxide (MnO) cathodes with a Zn/H co-intercalation mixing mechanism have exhibited great potential for aqueous zinc-ion batteries (AZIBs) owing to their high energy density and optimal electrolyte suitability. However, the strong electrostatic interactions and slow kinetics between the high charge density zinc ions and the fixed lattice in conventional cathodes have hindered the development of AZIBs. Hence, selecting H with a smaller ionic radius and reduced electrostatic repulsion as carriers was a feasible strategy.

View Article and Find Full Text PDF

This research article presents a comprehensive investigation into the three-dimensional structure, physicochemical characteristics and conformational stability of the Zein protein. Machine learning (ML) based homology modeling approach, was employed to predict the 3D structure of Zein protein. Convolutional neural networks (CNNs) were utilized for refining the model, capturing complex spatial features and improving decoy refinement.

View Article and Find Full Text PDF

Ionization desorption of charged analytes from the surface of solid amorphous glutaric acid particles, without the assistance of an external energy source, has been shown to be a promising method that can be coupled to mass spectrometry. We conduct mechanistic studies of the later stages of this ionization process using atomistic molecular dynamics. Our analysis focuses on the hydrogen bonding, diffusion, and ion desorption from nano-aggregates of glutaric acid.

View Article and Find Full Text PDF

Localized Water Restriction in Ternary Eutectic Electrolytes for Ultra-Low Temperature Hydrogen Batteries.

Angew Chem Int Ed Engl

November 2024

Department of Materials Science, Fudan University, Shanghai, 200433, Shanghai, P. R. China.

Proton batteries are promising candidates for next-generation large-scale energy storage in extreme conditions due to the small ionic radius and efficient transport of protons. Hydrogen gas, with its low working potentials, fast kinetics, and stability, further enhances the performance of proton batteries but necessitates the development of novel electrolytes with low freezing points and reduced corrosion. This work introduces a localized water restriction strategy by incorporating a tertiary component with a high donor number, which forms strong bonds with water molecules.

View Article and Find Full Text PDF

The optomechanical motion of a gold nanoparticle (GNP) dimer-a pair of optically bound GNPs-in fluid, manipulated by a Bessel beam, is theoretically studied using the multiple multipole (MMP) method. Since a Bessel beam possesses orbital angular momentum (OAM) and spin angular momentum (SAM) simultaneously, complicated rigid-body motions of the dimer can be induced. The mechanism involves the equilibrium between the optical force with the reactive drag force exerted by the fluid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!