We report the adsorption of phenol and dopamine probe molecules, from aqueous solution with NaCl, on commercial multiwall carbon nanotubes (MWCNT) and on their carboxylated derivative. The nanotubes were fully characterized by high resolution transmission electron microscopy (HRTEM), small angle X-ray scattering (SAXS), potentiometric titration, electrophoretic mobility, and nitrogen adsorption (77K) measurements. The experimental pollutant isotherms, evaluated using the Langmuir model, showed that only 8-12% and 21-32% of the BET surface area was available for phenol and dopamine, respectively, which is far below the performance of activated carbons. Influence of the pH was more pronounced for the oxidized MWCNT, particularly with dopamine. The strongest interaction and the highest adsorption capacity occurred at pH 3 with both model pollutants on both types of nanotubes. Although the surface area available for adsorption is far lower in MWCNTs than in activated carbons, it is nonetheless substantial. In particular, delayed release of toxic molecules that are either adsorbed on the surface or trapped in the inner bore of such systems could constitute an environmental hazard. The need for further adsorption studies with regard to their environmental aspects is therefore pressing, particularly for MWCNTs in their functionalized state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2011.08.044DOI Listing

Publication Analysis

Top Keywords

phenol dopamine
12
surface area
8
activated carbons
8
adsorption
5
interaction phenol
4
dopamine
4
dopamine commercial
4
commercial mwcnts
4
mwcnts report
4
report adsorption
4

Similar Publications

Bioinspired coatings that mimic the adhesive properties of mussels have received considerable attention for surface modification applications. While polydopamine chemistry has been widely used to develop functional coatings, 3,4-dihydroxyphenyl-l-alanine (l-DOPA), a key component of mussel adhesive proteins, has received less attention because, compared to dopamine, it is relatively difficult to form effective coatings on solid substrates in mildly alkaline solutions. Although several methods have been explored to improve the efficiency of l-DOPA coatings, there is still a need to expand the l-DOPA-based surface chemistry.

View Article and Find Full Text PDF

Background: Metoclopramide, a dopamine antagonist employed for its antiemetic effects, can precipitate neuropsychiatric adverse effects, including extrapyramidal symptoms and, in a few instances, acute psychosis. Although there have been reports of metoclopramide-induced psychosis in elderly individuals, there is no documentation of such incidents in children as far as we are aware.

Case Presentation: This case report describes an 11-year-old girl with a history of mild intellectual disability and attention deficit hyperactivity disorder, managed with 10 mg of methylphenidate daily.

View Article and Find Full Text PDF

Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Introduction: Adjunctive therapies to treat OFF episodes resulting from long-term levodopa treatment in Parkinson disease (PD) are hampered by safety and tolerability issues. Istradefylline offers an alternative mechanism (adenosine A2A receptor antagonist) and therefore potentially improved tolerability.

Methods: A systematic review of PD adjuncts published in 2011 was updated to include randomized controlled trials published from January 1, 2010-April 15, 2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!