Bone marrow transplantation is being used with increasing frequency and success for an expanding number of indications. At present, more than 1000 patients are surviving more than 5 years and several hundred more than 10 years after transplantation. Extended observation periods have shown that numerous complications have to be expected in these patients, particularly in those given TBI as part of the conditioning regimen. However, other factors including chemotherapy, GVHD, viral infections, host environment, and genetic factors also contribute to the problem. It has been pointed out by critics of bone marrow transplantation that success is often reported as disease-free survival, meaning survival in remission. However, there are, obviously, secondary problems that can significantly impair patients' quality of life, even though their leukemia (or lymphoma) is in unmaintained remission. Very few data on quality of life in long-term surviving patients have been reported. Several studies are currently ongoing (Forman S, Blume K, personal communication), and the results are urgently needed. It will also be of interest to compare patients given, allogeneic transplants with those given autologous marrow infusions in an attempt to determine to what extent conditioning regimens and alloreactivity contribute to long-term side effects. It will be even more important to design regimens that are less likely to induce these problems and to design therapeutic approaches to treat complications effectively.
Download full-text PDF |
Source |
---|
Tissue Eng Part C Methods
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.
View Article and Find Full Text PDFLeuk Lymphoma
January 2025
Stem Cell Transplantation and Cellular Therapies Unit, Department of Hemato-Oncology and Radiotherapy, Grande Ospedale Metropolitano "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy.
Blood Adv
January 2025
The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive.
View Article and Find Full Text PDFSci Adv
January 2025
Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.
View Article and Find Full Text PDFSci Adv
January 2025
Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, CA, USA.
(MTB) ESX-1, a type VII secretion system, is a key virulence determinant contributing to MTB's survival within lung mononuclear phagocytes (MNPs), but its effect on MNP recruitment and differentiation remains unknown. Here, using multiple single-cell RNA sequencing techniques, we studied the role of ESX-1 in MNP heterogeneity and response in mice and murine bone marrow-derived macrophages (BMDM). We found that ESX-1 is required for MTB to recruit diverse MNP subsets with high MTB burden.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!