In this study, a quantitative approach is proposed to understand the effect of the accelerating voltage and the probe current on the physical resolution of EBSD. The accelerating voltage was varied from 5 to 30kV and probe currents of 1, 10, and 40nA were selected. The lateral, longitudinal, and depth resolutions at 10kV and 1nA were 34.5, 44.7, and 46nm for copper, respectively. When the accelerating voltage was in the range of 5-20kV, the ratio of the longitudinal to the lateral resolution was below the theoretical ratio of 2.9. Considering the channeling effect, the best physical depth resolution of 38nm was achieved at 5kV and 10nA. The physical depth resolution in an EBSD measurement is much larger due to the channel effect than that obtained without considering this effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2011.06.007 | DOI Listing |
Light Sci Appl
January 2025
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, 475004, Kaifeng, China.
Solution-processed quantum dot light-emitting diodes (QLEDs) hold great potential as competitive candidates for display and lighting applications. However, the serious energy disorder between the quantum dots (QDs) and hole transport layer (HTL) makes it challenging to achieve high-performance devices at lower voltage ranges. Here, we introduce "giant" fully alloy CdZnSe/ZnSeS core/shell QDs (size ~ 19 nm) as the emitting layer to build high-efficient and stable QLEDs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
This study investigates the nonlinear dynamics of a system with frequency-dependent stiffness using a MEMS-based capacitive inertial sensor as a case study. The sensor is positioned directly on a rotating component of a machine and consists of a microbeam clamped at both ends by fixed supports with a fixed central proof mass. The nonlinear behavior is determined by electrostatic forces, axial and bending motion coupling, and frequency-dependent stiffness.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.
Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!