Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The aim of the present study was to examine the effect of chronic morphine exposure on diffuse noxious inhibitory controls in a large population of neurons throughout the medullary dorsal horn, as assessed using immunocytochemistry for c-Fos protein.
Background: Overuse of medications, including the opioids, to treat migraine headache can lead to progressively more frequent headaches. In addition, chronic daily headache sufferers and chronic opioid users both lack the inhibition of pain produced by noxious stimulation of a distal body region, often referred to as diffuse noxious inhibitory controls.
Methods: In urethane anesthetized rats, Fos-positive neurons were quantified in chronic morphine and vehicle-treated animals following 52°C noxious thermal stimulation of the cornea with and without the application of a spatially remote noxious stimulus (placement of the tail in 55°C water).
Results: When compared to chronic morphine-treated animals that did not receive the spatially remote noxious stimulus, chronic morphine-treated animals given corneal stimulation along with the spatially remote noxious stimulus demonstrated a 163% increase (P < .05) in the number of Fos-positive neurons in the superficial laminae of the medullary dorsal horn and a 682% increase (P < .01) in deep laminae that was restricted to the side ipsilateral to the applied stimulus. In contrast, no significant difference was found in Fos-like immunoreactivity in vehicle-treated animals given concurrent cornea and tail stimulation or only cornea stimulation in either superficial or deep laminae.
Conclusions: It is proposed that an increase in descending facilitation and subsequent loss of diffuse noxious inhibitory controls contributes to the development of medication overuse headache.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244550 | PMC |
http://dx.doi.org/10.1111/j.1526-4610.2011.01999.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!