A major challenge in realizing antiferromagnetic and superfluid phases in optical lattices is the ability to cool fermions. We determine the equation of state for the 3D repulsive Fermi-Hubbard model as a function of the chemical potential, temperature, and repulsion using unbiased determinantal quantum Monte Carlo methods, and we then use the local density approximation to model a harmonic trap. We show that increasing repulsion leads to cooling but only in a trap, due to the redistribution of entropy from the center to the metallic wings. Thus, even when the average entropy per particle is larger than that required for antiferromagnetism in the homogeneous system, the trap enables the formation of an antiferromagnetic Mott phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.107.086401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!