When a high voltage is applied to a liquid pumped through a needle, charged microdroplets can be formed, which are carried along the electric field lines. This phenomenon is called electrohydrodynamic atomization (EHDA), or simply electrospray. In this work we show that in the case of water, droplets may reverse their paths flying back toward the liquid meniscus, sometimes making contact with it. Such reverse movement is caused by polarization of the water inside the strong electric field. To understand this phenomenon we developed a way to calculate the droplet charge using its trajectory obtained by high-speed imaging. The values found showed that these droplets are charged between 2.5% and 19% of their Rayleigh limit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.84.026317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!