We present full volumetric (three-dimensional) time-resolved (+one-dimensional) measurements of the velocity field in a large water mixing tank, allowing us to assess spatial and temporal rotational energy (enstrophy) and turbulent energy dissipation intermittency. In agreement with previous studies, highly intermittent behavior is observed, with intense coherent flow structures clustering in the periphery of larger vortices. However, further to previous work the full volumetric measurements allow us to separate out the effects of advection from other effects, elucidating not only their topology but also the evolution of these intense events, through the local balance of stretching and diffusion. These findings contribute toward a better understanding of the intermittency phenomenon, which should pave the way for more accurate models of the small-scale motions based on an understanding of the underlying flow physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.84.025301 | DOI Listing |
Acc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.
View Article and Find Full Text PDFRadiology
January 2025
Stanford University School of Medicine, Department of Radiation Oncology, Stanford, CA, US.
Background Detection and segmentation of lung tumors on CT scans are critical for monitoring cancer progression, evaluating treatment responses, and planning radiation therapy; however, manual delineation is labor-intensive and subject to physician variability. Purpose To develop and evaluate an ensemble deep learning model for automating identification and segmentation of lung tumors on CT scans. Materials and Methods A retrospective study was conducted between July 2019 and November 2024 using a large dataset of CT simulation scans and clinical lung tumor segmentations from radiotherapy plans.
View Article and Find Full Text PDFCancer Res Commun
January 2025
University Hospitals Leuven, Leuven, Belgium.
This study evaluated the association between age at first full-term pregnancy (FFTP) and mammographic breast density (MBD) in postmenopausal women. 1,034 women, age 50-69y, were recruited from the Flemish (Belgium) population-based breast cancer screening program. Participants completed a questionnaire on lifestyle and reproductive factors.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2025
Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, Illinois, USA.
Background: Various methods exist to correct for intrafraction motion (IFM) of the prostate during radiotherapy. We sought to characterize setup corrections in our practice informed by the TrueBeam Advanced imaging package, and analyze factors associated with IFM.
Methods: 132 men received radiation therapy for prostate cancer with a volumetric modulated arc therapy technique.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!