Atomic force microscopy (AFM) of cadmium stearate (CdSt) and cobalt stearate (CoSt) Langmuir-Blodgett films show differences in their in-plane morphologies. CdSt films, with a huge number of in-plane "pinhole" defects, follow self-affine behavior, whereas CoSt films, which are almost void of such in-plane defects, show deviation from self-affinity especially at small length scales, suggesting liquidlike behavior, imparting flexibility to the system, in plane. Phase images of CoSt obtained from tapping mode AFM show gentle undulations or hemispherelike features in contrast to its smooth topography, unlike the CdSt system where both height and phase images show self-affine domains. Near edge x-ray absorption fine structure spectroscopy indicates no preferred in-plane orientation of the head group in CoSt films. The undulating features in CoSt is explained by invoking a radially symmetric orientational distribution in the tilt of adjacent hydrocarbon tails, causing a small in-plane density variation which shows up in the phase image. These orientational disorders in adjacent tails probably allow "filling up" of in-plane defects thereby giving rise to its excellent in-plane coverage and hence a "liquidlike" behavior in CoSt. Brewster angle microscopy shows that parent Langmuir monolayers of stearic acid in the presence of Cd and Co ions in the aqueous subphase behave as two-dimensional "solids" and "liquids," respectively, suggesting the phenomena to be inherent in the amphiphiles and probably independent of their organization as monolayers and multilayers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.84.021606 | DOI Listing |
Curr Res Food Sci
December 2024
School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
Chem Sci
December 2024
Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Centre of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
Here, we report a water-induced supramolecular polymer adhesive formed from confined water and an intrinsically amphiphilic macrocyclic self-assembly in a nanophase-separated structure. The selenium-containing crown ether macrocycle, featuring a strong hydrophilic hydrogen-bond receptor (selenoxide) and a synergistic hydrophobic selenium-substituted crown core, confines water within a segregated, interdigitated architecture. While water molecules typically freeze around 0 °C, the confined water in this supramolecular polymer remains in a liquid-like state down to -80 °C.
View Article and Find Full Text PDFSmall
January 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
Phys Rev Lett
December 2024
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.
Microstructural heterogeneities arising from molecular clusters directly affect the nonlinear thermodynamic properties of supercritical fluids. We present a physical model to elucidate the relation between energy exchange and heterogeneous cluster dynamics during the transition from liquidlike to gaslike conditions. By analyzing molecular-dynamics data and employing physical principles, the model considers contributions from three key processes, namely, changing cluster density, cluster separation, and transfer of molecules between clusters.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States.
Microgel suspensions have garnered significant interest in fundamental research due to their phase transition between liquid-like to paste-like behaviors stemming from tunable interparticle and particle-solvent interactions. Particularly, stimuli-responsive microgels undergo faster volume changes in response to external stimuli in comparison to their bulk counterparts, while maintaining their structural integrity. Here, concentrated and diluted suspensions of poly(-isopropylacrylamide) (PNIPAm) microgels are dispersed to different packing fractions in water for the characterizations of temperature-responsive rheological responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!