We investigate the symmetric Ashkin-Teller (AT) model on the triangular lattice in the antiferromagnetic two-spin coupling region (J<0). In the J→-∞ limit, we map the AT model onto a fully packed loop-dimer model on the honeycomb lattice. On the basis of this exact transformation and the low-temperature expansion, we formulate a variant of worm-type algorithms for the AT model, which significantly suppress the critical slowing down. We analyze the Monte Carlo data by finite-size scaling, and locate a line of critical points of the Ising universality class in the region J<0 and K>0, with K the four-spin interaction. Further, we find that, in the J→-∞ limit, the critical line terminates at the decoupled point K=0. From the numerical results and the exact mapping, we conjecture that this "tricritical" point (J→-∞,K=0) is Berezinsky-Kosterlitz-Thouless-like and the logarithmic correction is absent. The dynamic critical exponent of the worm algorithm is estimated as z=0.28(1) near (J→-∞,K=0).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.84.021125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!