Several chicken parts (skin, fat, juice) were cooked in different ways (roasting, simmering) and investigated separately for their volatile composition. In-depth GC/MS analysis of the separate fractions revealed several unknown molecules. Mass spectra interpretation allowed us to identify nine molecules for the first time in chicken, including cyclic aldehydes, cyclic ketones, and new δ-lactones containing an unsaturated linear chain. Identification was confirmed by chemical synthesis followed by comparison of the mass spectra and linear retention indices. The natural occurrence of five of these molecules is reported here for the first time in a natural product.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf2023066DOI Listing

Publication Analysis

Top Keywords

mass spectra
8
identification synthesis
4
synthesis volatile
4
molecules
4
volatile molecules
4
molecules extracts
4
extracts distinct
4
distinct parts
4
parts cooked
4
cooked chicken
4

Similar Publications

Unlabelled: Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries.

View Article and Find Full Text PDF

While gas chromatography mass spectrometry (GC-MS) has long been used to identify compounds in complex mixtures, this process is often subjective and time-consuming and leaves a large fraction of seemingly good-quality spectra unidentified. In this work, we describe a set of new mass spectral library-based methods to assist compound identification in complex mixtures. These methods employ mass spectral uniqueness and compound ubiquity of library entries alongside noise reduction and automated comparison of retention indices to library compounds.

View Article and Find Full Text PDF

Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to rapidly identify the chemical components in Dracocephalum moldavica, and UPLC was employed to determine the content of its main components. MS analysis was performed using an electrospray ionization(ESI) source and data were collected in the negative ion mode. By comparing the retention time and mass spectra of reference compounds, and using a self-built compound database and the PubChem database, 68 compounds were identified from D.

View Article and Find Full Text PDF

This study presents a novel approach that combines thermogravimetric analysis with time-of-flight mass spectrometry (TG-TOFMS), principal component analysis (PCA), and Kendrick mass defect (KMD) analysis─referred to as TG-PCA-KMD─to investigate molecular-scale structural changes and quantitatively assess the progression of thermo-oxidative degradation in glass fiber reinforced polypropylene (GF/PP). TG-TOFMS enables the simultaneous and sensitive detection of both structural changes due to thermo-oxidative degradation and compositional changes in the filler and matrix. PCA and KMD analysis are crucial for identifying specific ion series derived from the degraded PP matrix in the high-resolution mass spectra obtained through TG-TOFMS.

View Article and Find Full Text PDF

Differentiation of the chronic lymphocytic leukemia response to ibrutinib and acalabrutinib treatment by single-cell MALDI-TOF MS imaging.

J Pharm Biomed Anal

January 2025

Clinical Institute of Laboratory Diagnostics, University Hospital Centre Osijek, J. Huttlera 4, Osijek 31 000, Croatia; Faculty of Medicine Osijek, JJ Strossmayer University of Osijek, J. Huttlera 4, Osijek 31 000, Croatia. Electronic address:

Ibrutinib and acalabrutinib, Bruton's tyrosine kinase inhibitors (BTKi) used for chronic lymphocytic leukemia (CLL) treatment, aim the same target but their off-target effects are different. The aim of this study was to use single-cell MALDI TOF mass spectrometry imaging to compare the CD19+ lymphocytes' mass spectra in untreated and ibrutinib- or acalabrutinib-treated subjects in order to better understand the therapeutic effect of BTKi. 180 cells from 9 male subjects divided in 3 groups (untreated, ibrutinib-treated and acalabrutinib-treated) were analyzed using MALDI-TOF mass spectrometry analyzer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!