The synthesis, structural characterization, and bonding situation analysis of a novel, all-zinc, hepta-coordinated palladium complex [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) is reported. The reaction of the substitution labile d(10) metal starting complex [Pd(CH(3))(2)(tmeda)] (tmeda = N,N,N',N'-tetramethyl-ethane-1,2-diamine) with stoichiometric amounts of [Zn(2)Cp*(2)] (Cp* = pentamethylcyclopentadienyl) results in the formation of [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) in 35% yield. Compound 1 has been fully characterized by single-crystal X-ray diffraction, (1)H and (13)C NMR spectroscopy, IR spectroscopy, and liquid injection field desorption ionization mass spectrometry. It consists of an unusual [PdZn(7)] metal core and exhibits a terminal {Zn(tmeda)} unit. The bonding situation of 1 with respect to the properties of the three different types of Zn ligands Zn(R,L) (R = CH(3), Cp*; L = tmeda) bonded to the Pd center was studied by density functional theory quantum chemical calculations. The results of energy decomposition and atoms in molecules analysis clearly point out significant differences according to R vs L. While Zn(CH(3)) and ZnCp* can be viewed as 1e donor Zn(I) ligands, {Zn(tmeda)} is best described as a strong 2e Zn(0) donor ligand. Thus, the 18 valence electron complex 1 nicely fits to the family of metal-rich molecules of the general formula [M(ZnR)(a)(GaR)(b)] (a + 2b = n ≥ 8; M = Mo, Ru, Rh; Ni, Pd, Pt; R = Me, Et, Cp*).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic201701r | DOI Listing |
Anal Chem
January 2025
Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
Single-cell proteomics (SCP) detected based on different technologies always involves batch-specific variations because of differences in sample processing and other potential biases. How to integrate SCP data effectively has become a great challenge. Integration of SCP data not only requires the conservation of true biological variances, but also realizes the removal of unwanted batch effects.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Nursing and Physiotherapy, University of Salamanca, Salamanca, Spain.
Background: Sarcopenia is a clinical syndrome characterized by the loss of muscle mass and strength. Hormonal changes that occur early in women may influence protein synthesis and promote muscle atrophy, leading to probable sarcopenia, defined as a loss of muscle strength without an obvious decrease in muscle mass. Various types of exercise have already proven effective in treating sarcopenia.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
Hemolysin co-regulated protein 1 (Hcp1) is a component of the cluster 1 Type VI secretion system (T6SS1) that plays a key role during the intracellular lifecycle of Burkholderia pseudomallei. Hcp1 is recognized as a promising target antigen for developing melioidosis diagnostics and vaccines. While the gene encoding Hcp1 is retained across B.
View Article and Find Full Text PDFPLoS One
January 2025
School of Health Policy and Management, York University, Toronto, Ontario, Canada.
Wildlife trade can create adverse impacts for biodiversity and human health globally, including increased risks for zoonotic spillover that can lead to pandemics. Institutional responses to zoonotic threats posed by wildlife trade are diverse; understanding regulations governing wildlife trade is an important step for effective zoonotic spillover prevention measures. In this review, we focused on peer-reviewed studies and grey literature conducted on regulatory approaches that govern domestic and international wildlife trade in order to assess the role of local, national and global-level institutions in the prevention of zoonotic spillover and infection transmission between humans.
View Article and Find Full Text PDFSchizophr Bull
January 2025
Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.
Background And Hypothesis: Population-based morphological covariance networks are widely reported to be altered in schizophrenia. Individualized morphological brain network approaches have emerged recently. We hypothesize that individualized morphological brain networks are disrupted in schizophrenia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!