For the d(0) complex [{Zr(CpSiMe(2)H)Cl(3)}(2)] which contains a linear Si-H···Zr interaction across the dimer, DFT calculations are in good agreement with X-ray structures. The BP86 functional shows a slightly stronger interaction than B3LYP but for qualitative purposes either functional is sufficient. QTAIM analysis shows a bond critical point (bcp) for the interaction, a small negative value for the total energy density [H((r))] and the H atomic basin decreases in energy, E(H), and atomic volume compared to the free ligand. NBO analysis showed E(2) for Si-H σ to Zr(dz(2)) donation at 42.8 kcal mol(-1) and a 34% spatial overlap for the interaction consistent with an inverse hydrogen bond. The Wiberg bond index for the interaction is 0.1735 (0.7205 for the Si-H bond), ν((Si-H)) and (1)J((Si-H)) at 2060 cm(-1) and 145.4 Hz compared to 2183 cm(-1) and 172.1 Hz in the free ligand. Using a "synthesis by computation" approach to forming like complexes, similar features were found for [{Hf(CpSiMe(2)H)Cl(3)}(2)]. The titanium complex [{Ti(CpSiMe(2)H)Cl(3)}(2)] does not contain any Si-H···Ti interaction as rotation about the C-Si bond of the ligand occurs to place the Si-H bond hydrogen closer to a terminal chloro ligand across the dimer. An increase in electron density on the metal in the d(2) complex [{Mo(CpSiMe(2)H)Cl(3)}(2)] results in a stronger interaction with a distinct QTAIM analysis bcp [ρ((r)) 0.0448 a.u.], a small negative value for H((r)) and a much reduced H atomic volume. NBO analysis shows E(2) for Si-H σ to Mo(dz(2)) donation at 143.1 kcal mol(-1) and a 29% spatial overlap. Mo(dz(2)) to Si-H σ* donation (back donation) is minimal [E(2) 1.3 kcal mol(-1), ~1% spatial overlap]. The Wiberg bond index is 0.3114 (0.5667 for the Si-H bond), ν((Si-H)) 2015 cm(-1) and (1)J((Si-H)) 120.6 Hz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c1dt10630a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!